ExtendedNormalizedGcd - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[ChainTools]

  

ExtendedNormalizedGcd

  

extended normalized GCD of two polynomials with respect to a regular chain

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ExtendedNormalizedGcd(p1, p2, v, rc, R)

Parameters

p1

-

polynomial of R

p2

-

polynomial of R

v

-

variable of R

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command ExtendedNormalizedGcd(p1, p2, v, rc, R) returns a list of pairs gi,ai,bi,rci where ai, bi, gi are polynomials of R and rci is a regular chain of R.

• 

For each pair, the polynomial gi is a normalized GCD of p1 and p2 modulo the saturated ideal of rci.

• 

For each pair, the polynomials ai, bi, gi satisfy aip1+bip2=gi modulo the saturated ideal of rci.

• 

For each pair, the leading coefficient of the polynomial gi with respect to v is normalized (and thus regular) modulo the saturated ideal of rci.

• 

The returned regular chains rci form a triangular decomposition of rc (in the sense of Kalkbrener).

• 

The returned regular chains are strongly normalized.

• 

Comparing to ExtendedRegularGcd, the output of ExtendedNormalizedGcd will look simpler in general when rc is zero-dimensional.

• 

However, the output of ExtendedNormalizedGcd may be much larger and much more expensive to get than the one of ExtendedRegularGcd, when rc is not zero-dimensional.

• 

rc must be strongly normalized.

• 

v must be the common main variable of p1 and p2.

• 

The initials of p1 and p2 must be regular with respect to rc.

• 

This command is part of the RegularChains[ChainTools] package, so it can be used in the form ExtendedNormalizedGcd(..) only after executing the command with(RegularChains[ChainTools]).  However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][ExtendedNormalizedGcd](..).

Examples

withRegularChains:withChainTools:

RPolynomialRingx,y,z

Rpolynomial_ring

(1)

rcChainz2z1,EmptyR,R

rcregular_chain

(2)

p1yz3

p1yz3

(3)

p2y3z3

p2y3z3

(4)

ExtendedNormalizedGcdp1,p2,y,rc,R

9y9z,6yz9y3z+6,6yz+9y6z+12,regular_chain

(5)

References

  

Moreno Maza, M. "On triangular decompositions of algebraic varieties" Technical Report 4/99, NAG, UK, Presented at the MEGA-2000 Conference, Bath, UK. Available at http://www.csd.uwo.ca/~moreno.

See Also

Chain

Empty

ExtendedRegularGcd

PolynomialRing

RegularChains

RegularGcd

Regularize

RegularizeInitial