Dimension - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[ChainTools]

  

Dimension

  

dimension of a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

Dimension(rc, R)

Parameters

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command Dimension(rc, R) returns the dimension of the saturated ideal of rc. This is also the number of variables of R minus the number of elements in rc.

• 

This command is part of the RegularChains[ChainTools] package, so it can be used in the form Dimension(..) only after executing the command with(RegularChains[ChainTools]).  However, it can always be accessed through the long form of the command by using RegularChains[ChainTools][Dimension](..).

Examples

withRegularChains:

withChainTools:

RPolynomialRingx,y,a,b,c,d,g,h

Rpolynomial_ring

(1)

sysax+byg,cx+dyh

sysax+byg,cx+dyh

(2)

declTriangularizesys,R,output=lazard

declregular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain,regular_chain

(3)

mapEquations,decl,R

cx+dyh,dabcyha+cg,cx+dyh,dabc,hbdg,ax+byg,dyh,c,dyh,a,hbdg,c,cxh,hacg,b,d,ax+byg,c,d,h,cx+dy,dabc,g,h,byg,a,c,d,h,y,a,c,g,h,x,b,d,g,h,a,b,c,d,g,h

(4)

We see that RegularChains[Triangularize] produces the regular chains in decreasing order of dimension. This is, in fact, part of the specifications of this function.

mapDimension,decl,R

6,5,5,4,4,4,4,3,3,3,2

(5)

Here is another simple example with a triangular decomposition containing regular chains of different dimensions.

RPolynomialRingx,y,z

Rpolynomial_ring

(6)

sysxx1y1+x2y,xx1z,xx1x2

sysxx1y1+x2y,xx1z,xx1x2

(7)

decTriangularizesys,R

decregular_chain,regular_chain,regular_chain

(8)

mapEquations,dec,R

x,x1,y,x2,y1,z

(9)

mapDimension,dec,R

2,1,0

(10)

These regular chains are a surface, a line, and a point respectively.

See Also

ChainTools

Equations

map

PolynomialRing

RegularChains

Triangularize