PolynomialTools[Approximate]
Factor
compute approximate factorization
Calling Sequence
Parameters
Options
Description
Examples
References
Compatibility
Factor(F, vars)
Factor(F, vars, options)
F
-
polynom({numeric,complex(numeric)})
vars
set or list of variables
noexact
if provided, exact factorization of F will not be attempted
optimize
if given then a post-processing step is done on the output, using Optimization:-NLPSolve to return an approximate factorization with smaller backward error. Optionally, it can be given as optimize=list with a list of extra options to be passed to optimization.
After a series of initial preprocessing steps designed to handle exact and degenerate cases, numerical factors of F are found from the a low rank approximation of its RuppertMatrix.
This command works for univariate polynomials by calling factor which finds the real linear and quadratic factors from the roots.
withPolynomialTools:-Approximate:
F≔sortexpandx2+y2−1x3−y3+1,x,y
F≔x5+x3y2−x2y3−y5−x3+y3+x2+y2−1
aF_8≔FactorexpandF+10−8xy,x,y
aF_8≔−3.44406483254625−0.552477515342034+9.46732507922508×10−11x+1.34863064253940×10−9y+0.552477517547611x2+2.03989800976321×10−9xy+0.552477516001717y2−0.525550037745132−6.82222634889839×10−10x−3.43514283815260×10−9y−7.62609279982288×10−10x2+6.10950431663182×10−10xy+6.99438216295762×10−10y2−0.525550038461344x3−3.70256764216089×10−10yx2−8.19581622671544×10−10y2x+0.525550036601363y3
sortfnormalexpandaF_8,x,y
1.x5+0.9999999988x3y2−0.9999999958x2y3−0.9999999937y5−0.9999999947x3+0.9999999990y3+0.9999999972x2+0.9999999972y2−0.9999999946
ilog10normexpandF−aF_8,2normF,2
−9
aF_4≔FactorexpandF+10−4xy,x,y
aF_4≔3.47266293000014−0.552885827441133−9.97108941066633×10−6x+0.0000179791567478723y+0.552898569944407x2+8.98886932458016×10−6xy+0.552899121071376y20.520834024267642−5.33436675047966×10−6x+0.0000175929390278785y+4.50859262542559×10−6x2−0.0000210937198294713xy+9.51805868081277×10−6y2+0.520828698460220x3+2.48682307870096×10−6yx2−2.34026244956660×10−6y2x−0.520822689868282y3
sortfnormalexpandaF_4,6,x,y
1.00001x5+1.00000x3y2−0.999991x2y3−0.999996y5−0.999994x3+1.00001y3+1.00001x2+1.00000y2−0.999994
ilog10normexpandF−aF_4,2normF,2
−5
aF_4I≔FactorexpandF+10−4Ixy,x,y
aF_4I≔3.33619010335823+0.00138405371522788I−0.563243378346106+0.I+3.15399383486919×10−10−0.0000272293890141111Ix+−9.99721735744224×10−11+0.0000398337975347528Iy+0.563243374464763+0.0000246224743767121Ix2−8.65008148054685×10−9+0.0000388463671328584Ixy+0.563243379992084+0.0000319121754359758Iy20.532173243933621−0.000251457665365619I+−3.38789333275673×10−11+7.37229906536008×10−6Ix−1.32709965941180×10−8+0.0000153645870134051Iy−3.07395251093478×10−9+4.12354418671067×10−6Ix2+7.05065898735183×10−9+0.0000239417006586643Ixy−8.60670859921420×10−10+0.0000123372268822169Iy2+0.532173243133265−0.000244041924962185Ix3−2.53074133071583×10−9+2.35423260814531×10−6Iyx2+−3.19409226541232×10−10+4.05319818908638×10−6Iy2x+−0.532173249298037+0.000239875827130997Iy3
sortfnormalexpandaF_4I,6,x,y
1.x5+1.00000x3y2−1.00000x2y3−1.00000y5+0.000115711Ix3y−1.00000x3+1.00000y3+1.00000x2−0.000113958Ixy+1.00000y2−1.00000+0.I
ilog10normexpandF−aF_4I,2normF,2
Gao, S.; Kaltofen, E.; May, J.; Yang, Z.; and Zhi, L. "Approximate factorization of multivariate polynomials via differential equations." Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation (ISSAC 2004), pp. 167-174. Ed. J. Guitierrez. ACM Press, 2004.
Kaltofen, E.; May, J.; Yang, Z.; and Zhi, L. "Approximate factorization of multivariate polynomials using singular value decomposition." Journal of Symbolic Computation Vol. 43(5), (2008): 359-376.
The PolynomialTools:-Approximate:-Factor command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
factor
RuppertMatrix
Download Help Document