in - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

PolyhedralSets

 intersect
 polyhedral intersection operator
 subset
 polyhedral subset operator
 in
 polyhedral membership operator

Calling Sequence

 s1 intersect s2 $\mathrm{s1}\cap \mathrm{s2}$ intersect(s1, s2, s3, ...) s1 subset s2 $\mathrm{s1}\subseteq \mathrm{s2}$ subset(s1,s2) s1 in s2 $\mathrm{s1}\in \mathrm{s2}$ in(s1,s2) pnt in s1 $\mathrm{pnt}\in \mathrm{s1}$ in(pnt,s1)

Parameters

 s1, s2, s3, ... - polyhedral sets pnt - point specified as list of rationals, or list or set of equations of the form coordinate = rational

Description

 • The PolyhedralSets package provides definitions for the intersect, subset and in set operators.  The intersection operators returns a new polyhedral set, while the subset and in operators return either true or false.
 • The definition of the set operators can be loaded using with(PolyhedralSets).

Examples

 > $\mathrm{with}\left(\mathrm{PolyhedralSets}\right):$

Intersection

 • Four of the corners of a cube can be cut off by taking its intersection with a tetrahedron
 > $\mathrm{tetra}≔\mathrm{PolyhedralSet}\left(2\left[\left[1,1,1\right],\left[1,-1,-1\right],\left[-1,1,-1\right],\left[-1,-1,1\right]\right],\left[x,y,z\right]\right):$$\mathrm{cube}≔\mathrm{ExampleSets}:-\mathrm{Cube}\left(\left[x,y,z\right]\right):$$\mathrm{t_c_intersect}≔\mathrm{tetra}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}∩\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{cube}$
 ${\mathrm{t_c_intersect}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{x}{,}{y}{,}{z}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{z}{\le }{1}{,}{z}{\le }{1}{,}{-}{y}{\le }{1}{,}{y}{\le }{1}{,}{-}{y}{-}{z}{-}{x}{\le }{2}{,}{-}{x}{\le }{1}{,}{y}{+}{z}{-}{x}{\le }{2}{,}{x}{-}{y}{+}{z}{\le }{2}{,}{x}{\le }{1}{,}{x}{+}{y}{-}{z}{\le }{2}\right]\end{array}$ (1)
 > $\mathrm{Plot}\left(\mathrm{t_c_intersect}\right)$

Subset

 • Construct a tetrahedron and a cube
 > $\mathrm{tetra}≔\mathrm{ExampleSets}:-\mathrm{Tetrahedron}\left(\right)$
 ${\mathrm{tetra}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{1}}{-}{{x}}_{{2}}{-}{{x}}_{{3}}{\le }{1}{,}{-}{{x}}_{{1}}{+}{{x}}_{{2}}{+}{{x}}_{{3}}{\le }{1}{,}{{x}}_{{1}}{-}{{x}}_{{2}}{+}{{x}}_{{3}}{\le }{1}{,}{{x}}_{{1}}{+}{{x}}_{{2}}{-}{{x}}_{{3}}{\le }{1}\right]\end{array}$ (2)
 > $\mathrm{cube}≔\mathrm{ExampleSets}:-\mathrm{Cube}\left(\right)$
 ${\mathrm{cube}}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{3}}{\le }{1}{,}{{x}}_{{3}}{\le }{1}{,}{-}{{x}}_{{2}}{\le }{1}{,}{{x}}_{{2}}{\le }{1}{,}{-}{{x}}_{{1}}{\le }{1}{,}{{x}}_{{1}}{\le }{1}\right]\end{array}$ (3)
 • The tetrahedron tetra is a subset of the cube cube
 > $\mathrm{tetra}⊆\mathrm{cube}$
 ${\mathrm{true}}$ (4)
 • But cube isn't a subset of tetra
 > $\mathrm{cube}⊆\mathrm{tetra}$
 ${\mathrm{false}}$ (5)

In

 • Any point in a set will return true when tested with in
 > $c≔\mathrm{ExampleSets}:-\mathrm{Cube}\left(\right)$
 ${c}{≔}{{}\begin{array}{lll}{\mathrm{Coordinates}}& {:}& \left[{{x}}_{{1}}{,}{{x}}_{{2}}{,}{{x}}_{{3}}\right]\\ {\mathrm{Relations}}& {:}& \left[{-}{{x}}_{{3}}{\le }{1}{,}{{x}}_{{3}}{\le }{1}{,}{-}{{x}}_{{2}}{\le }{1}{,}{{x}}_{{2}}{\le }{1}{,}{-}{{x}}_{{1}}{\le }{1}{,}{{x}}_{{1}}{\le }{1}\right]\end{array}$ (6)
 > $\left[0,0,0\right]\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}∈\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}c$
 ${\mathrm{true}}$ (7)
 • To find the face on which the point resides, see PolyhedralSets[LocatePoint]

Compatibility

 • The PolyhedralSets[intersect], PolyhedralSets[subset] and PolyhedralSets[in] commands were introduced in Maple 2015.
 • For more information on Maple 2015 changes, see Updates in Maple 2015.