Factor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Ordinals

  

Factor

  

factor an ordinal number

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Factor(a, output=o, form=f)

Parameters

a

-

ordinal, nonnegative integer, or polynomial with positive integer coefficients

o

-

(optional) literal keyword; either list (default) or inert

f

-

(optional) literal keyword; one of full (default), monic, rmonic or pairs

Returns

• 

If output=list (the default), a list of ordinals, nonnegative integers and polynomials with positive integer coefficients is returned.

• 

Otherwise, if output=inert is specified, an inert product of ordinal numbers using the inert multiplication and exponentiation operators &. and &^, respectively, is returned. Factors equal to  are omitted from this product representation.

Description

• 

The Factor(a) calling sequence computes a factored normal form of  as a product of nonnegative integers and ordinals of the form  or .

• 

If , then the full factored normal form is:

  

where  and  for .

• 

Each factor  is irreducible in the sense that if  for some ordinals  and , then necessarily  or , and if  for some ordinals  and , then necessarily  and .

• 

The monic factored normal form is:

• 

The rmonic factored normal form is:

• 

If form=pairs is specified, then the result is returned in the form .

• 

The ordinal  can be parametric. However, unless all coefficients  are positive when substituting arbitrary nonnegative integers for all the parameters, an error will be raised.

Examples

(1)

(2)

(3)

Display the result as a product, and verify the answer.

(4)

(5)

Other output forms. Note the grouping of similar factors.

(6)

(7)

Just the bare data of the full factored normal form, and the original data of the Cantor normal form, for comparison.

(8)

(9)

Parametric examples.

Error, (in Ordinals:-Factor) cannot determine if x is nonzero

(10)

(11)

Compatibility

• 

The Ordinals[Factor] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Gcd]

Ordinals[Mult]

Ordinals[Ordinal]

value

 


Download Help Document