Primitive Root - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


NumberTheory

  

PrimitiveRoot

  

primitive root modulo n

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

PrimitiveRoot(n, options)

Parameters

n

-

positive integer

options

-

(optional) at most one of greaterthan = m or ith = i, where m is a non-negative integer and i is a positive integer

Description

• 

The PrimitiveRoot(n) command returns the smallest primitive root modulo n, if it exists.

• 

The PrimitiveRoot(n, greaterthan = m) command returns the smallest primitive root modulo n greater than m.

• 

The PrimitiveRoot(n, ith = i) command returns the ith smallest primitive root modulo n.

• 

If the required primitive root does not exist, then an error message is displayed.

• 

The integers that are coprime to n form a group of order Totient(n) under multiplication modulo n. If this group is cyclic, then a generator is called a primitive root modulo n. That is, if p is a primitive root modulo n, then every integer coprime to n is congruent to some power of p modulo n.

• 

If a primitive root modulo n exists, then the number of primitive roots is Totient(Totient(n)).

Examples

withNumberTheory:

PrimitiveRoot4

3

(1)

TotientTotient4

1

(2)

So 3 is the only primitive root modulo 4.

PrimitiveRoot7

3

(3)

TotientTotient7

2

(4)

So there are two primitive roots modulo 7.

PrimitiveRoot7,greaterthan=3

5

(5)

Both 3 and 5 are generators for the group of units under multiplication modulo 7.

seq3imod7,i=1..Totient7,seq5imod7,i=1..Totient7

3,2,6,4,5,1,5,4,6,2,3,1

(6)

Since the maximal order modulo 8 is less than φ8, a primitive root does not exist and an error message is displayed.

seq3nmod8,n=0..2,seq5nmod8,n=0..2,seq7nmod8,n=0..2

1,3,1,1,5,1,1,7,1

(7)

Totient8

4

(8)

PrimitiveRoot8

Error, (in NumberTheory:-PrimitiveRoot) there does not exist a primitive root modulo 8

List all the primitive roots modulo 27, if any exist.

PrimitiveRoot27

2

(9)

seqPrimitiveRoot27,ith=i,i=1..TotientTotient27

2,5,11,14,20,23

(10)

Compatibility

• 

The NumberTheory[PrimitiveRoot] command was introduced in Maple 2016.

• 

For more information on Maple 2016 changes, see Updates in Maple 2016.

See Also

NumberTheory

NumberTheory[MultiplicativeOrder]

NumberTheory[PseudoPrimitiveRoot]