ModifiedMeijerG - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

ModifiedMeijerG

modified Meijer G function

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ModifiedMeijerG(as, bs, cs, ds, z)

Parameters

as

-

list of the form [a1, ..., am]; first group of numerator  parameters

bs

-

list of the form [b1, ..., bn]; first group of denominator  parameters

cs

-

list of the form [c1, ..., cp]; second group of numerator  parameters

ds

-

list of the form [d1, ..., dq]; second group of denominator  parameters

z

-

expression

Description

Important: The ModifiedMeijerG command has been deprecated.  Use the superseding command MeijerG instead.

• 

The modified Meijer G function is defined by the inverse Laplace transform:

  

where

  

and  L is one of three types of integration paths , , and .

  

Contour  starts at  and finishes at  ().

  

Contour  starts at  and finishes at  ().

  

Contour  starts at  and finishes at .

  

All the paths , , and  put all  poles on the right and all other poles of the integrand (which must be of the form ) on the left.

• 

The classical definition of the Meijer G function is related to the modified definition by

  

Note: See Prudnikov, Brychkov, and Marichev.

• 

Three noticeable differences between the notations are:

1. 

the parameters of the modified Meijer G function are separated out into four natural groups,

2. 

 instead of  is placed inside the integral definition of ModifiedMeijerG, and

3. 

the pq\mn subscripts and superscripts which are now redundant are omitted.

Examples

Important: The ModifiedMeijerG command has been deprecated.  Use the superseding command MeijerG instead.

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

  

Prudnikov, A. P.; Brychkov, Yu; and Marichev, O. Integrals and Series, Volume 3: More Special Functions. Gordon and Breach Science, 1990.

See Also

convert/MeijerG

convert/StandardFunctions

MeijerG

 


Download Help Document