MahlerSystem - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


MatrixPolynomialAlgebra

  

MahlerSystem

  

compute the Mahler system of a matrix of polynomials

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

MahlerSystem(A, x, vn, vo, returnAll)

Parameters

A

-

Matrix

x

-

variable name of the polynomial domain

vn

-

list of integers specifying type of Mahler system

vo

-

list of integers specifying order of Mahler system

returnAll

-

(optional) boolean; specify whether to return expression sequence of Mahler system, residual, closest normal point, the order of the Mahler system computed, and a list of indices indicating the nonzero columns of R, or only the Mahler system, residual, and closest normal point

Description

• 

The MahlerSystem(A, x, vn, vo) command computes the Mahler system of an m x n rectangular Matrix of univariate polynomials in x over the field of rational numbers Q, or rational expressions over Q (that is, univariate polynomials in x with coefficients in Q(a1,...,an)), its residual R, and its closest normal point v.

• 

The MahlerSystem(A, x, vn, vo, true) command returns the Mahler system, residual, closest normal point, the order of the Mahler system computed, and a list of indices indicating the nonzero columns of R.

• 

If M = MahlerSystem(A, x, vn, vo) with the entries of A from , the columns of M form a  module basis for the  (mathematical) module

  

in the sense that a module basis consists of  for  where n is the number of columns of M and v is the closest normal point to vn.

• 

If the residual R is returned, it satisfies , where  is the diagonal matrix containing  in entry .

Examples

(1)

(2)

Check the order condition.

(3)

Return residual and closest normal point.

(4)

Check.

(5)

References

  

Beckermann, B. and Labahn, G. "Fraction-free Computation of Matrix Rational Interpolants and Matrix GCDs." SIAM Journal on Matrix Analysis and Applications. Vol. 22 No. 1, (2000): 114-144.

See Also

expand

if

indets

LinearAlgebra[PopovForm]

map

Matrix

MatrixPolynomialAlgebra

 


Download Help Document