Socle - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

Socle

  

construct the socle of a group

  

Cosocle

  

construct the cosocle of a group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Socle( G )

Cosocle( G )

Parameters

G

-

a permutation group

Description

• 

The socle of a group G is the subgroup generated by the minimal normal (non-trivial) subgroups of G.

• 

The cosocle of a group G is the intersection of the maximal normal subgroups of G. It is also equal to the set of "normal non-generators" of G, that is, the set of elements of G that can be omitted from any set X for which G is the normal closure of X.

• 

The Socle( G ) command constructs the socle of a group G.

• 

The Cosocle( G ) command constructs the cosocle of the group G.

Examples

withGroupTheory:

SSocleSymm4

S1,23,4,1,42,3

(1)

dfDirectFactorsS

df1,23,4,1,42,3

(2)

andmapIsSimple,df

true

(3)

AreIsomorphicCosocleSymm4,Alt4

true

(4)

SSocleAlt6

SA6

(5)

IsSubgroupAlt6,S

true

(6)

GDirectProductAlt5,Alt5

G < a permutation group on 10 letters with 4 generators >

(7)

IsSubgroupG&comma;SocleG

true

(8)

IsTrivialCosocleAlt6

true

(9)

The cosocle of a cyclic group is trivial if, and only if, the group has square-free order.

CosocleCyclicGroup30

(10)

CosocleCyclicGroup12

1&comma;72&comma;83&comma;94&comma;105&comma;116&comma;12

(11)

Compatibility

• 

The GroupTheory[Socle] and GroupTheory[Cosocle] commands were introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory

GroupTheory[AlternatingGroup]

GroupTheory[DirectFactors]

GroupTheory[IsSimple]

GroupTheory[IsSubgroup]

GroupTheory[SymmetricGroup]