GroupTheory - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : GroupTheory/PrimePowerFactors

GroupTheory

  

PrimePowerFactors

  

factor a group element as a product of elements of prime power order

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

PrimePowerFactors( g, G )

Parameters

g

-

element of G whose factorization is to be computed

G

-

group containing the element g

Description

• 

For an element g of finite order in a group G, the prime power factors of g are elements g1,g2,..,gk of G such that g=g1·g2..gk, and such that each gi has order equal to a power of a prime number. The elements gi are pairwise commutative, and are uniquely determined up to the order in which they occur.

• 

The PrimePowerFactors( g, G ) command computes the prime power factors of the group element g.

Examples

withGroupTheory:

fPrimePowerFactorsPerm1,2,3,4,5,6,Symm6

f1,42,53,6,1,5,32,6,4

(1)

andmaptype,mapElementOrder,f,Symm6,primepower

true

(2)

PermProductf

1,2,3,4,5,6

(3)

Compatibility

• 

The GroupTheory[PrimePowerFactors] command was introduced in Maple 2019.

• 

For more information on Maple 2019 changes, see Updates in Maple 2019.

See Also

GroupTheory[ElementOrder]

GroupTheory[SylowSubgroup]

GroupTheory