 IntervalGraph - Maple Help

GraphTheory

 IntervalGraph
 construct an interval graph Calling Sequence IntervalGraph( c ) Parameters

 c - a list, Vector, or 1-D Array of intervals Description

 • The IntervalGraph( c ) command returns an interval graph for the collection of intervals c.
 • Each element of the input c must be a range or a RealRange expression. A range a..b is interpreted as the closed real interval from a to b. To specify open or half-open intervals, you can use RealRange.
 • An interval graph is the intersection graph of a set of intervals on the real line. For any vertices $i$, $j$ in the graph, an edge between $i$ and $j$ exists if and only if the intervals $i$ and $j$ intersect. Examples

Compute the interval graph for {1..3, 2..4, 3..5}.

 > $\mathrm{with}\left(\mathrm{GraphTheory}\right):$
 > $G≔\mathrm{IntervalGraph}\left(\left[1..3,2..4,3..5\right]\right)$
 ${G}{≔}{\mathrm{Graph 1: an undirected unweighted graph with 3 vertices and 3 edge\left(s\right)}}$ (1)

Construct a schedule to distribute a set of business meetings across several conference rooms.

 > $\mathrm{Meetings}≔\left[9..11.5,9.5..10,9.75..15,11.5..15,12.5..13.5,14.5..17,16.5..17.5\right]$
 ${\mathrm{Meetings}}{≔}\left[{9}{..}{11.5}{,}{9.5}{..}{10}{,}{9.75}{..}{15}{,}{11.5}{..}{15}{,}{12.5}{..}{13.5}{,}{14.5}{..}{17}{,}{16.5}{..}{17.5}\right]$ (2)
 > $\mathrm{RoomNames}≔\left["Suite Infinity","Geddes Suite","Taylor\text{'}s Suite"\right]$
 ${\mathrm{RoomNames}}{≔}\left[{"Suite Infinity"}{,}{"Geddes Suite"}{,}{"Taylor\text{'}s Suite"}\right]$ (3)
 > $\mathrm{Schedule}≔\mathrm{GreedyColor}\left(\mathrm{IntervalGraph}\left(\mathrm{Meetings}\right)\right)$
 ${\mathrm{Schedule}}{≔}{3}{,}\left[{1}{,}{2}{,}{0}{,}{2}{,}{1}{,}{1}{,}{0}\right]$ (4)
 > $\mathrm{Room}≔i↦\mathrm{RoomNames}\left[\mathrm{Schedule}\left[2\right]\left[\mathrm{ListTools}:-\mathrm{Search}\left(i,\mathrm{Meetings}\right)\right]+1\right]:$
 > $\mathrm{ListTools}:-\mathrm{Classify}\left(\mathrm{Room},\mathrm{Meetings}\right)$
 ${table}{}\left(\left[{"Suite Infinity"}{=}\left\{{9.75}{..}{15}{,}{16.5}{..}{17.5}\right\}{,}{"Taylor\text{'}s Suite"}{=}\left\{{9.5}{..}{10}{,}{11.5}{..}{15}\right\}{,}{"Geddes Suite"}{=}\left\{{9}{..}{11.5}{,}{12.5}{..}{13.5}{,}{14.5}{..}{17}\right\}\right]\right)$ (5)

The following interval graph has only edge because the intervals 0..1 and 1..2 intersect at 1, but the half-open interval $\left[-1,0\right)$ does not intersect 0..1.

IntervalGraph( [ RealRange(-1,Open(0)), 0..1, 1..2 ] );

Visualize the relationships within a set of intervals.

 > $G≔\mathrm{IntervalGraph}\left(\left[0..8,1..\mathrm{\pi },\mathrm{exp}\left(1\right)..20,7..18,11..14,\mathrm{RealRange}\left(17,\mathrm{Open}\left(23\right)\right),23..25\right]\right)$
 ${G}{≔}{\mathrm{Graph 2: an undirected unweighted graph with 7 vertices and 9 edge\left(s\right)}}$ (6)
 > $\mathrm{DrawGraph}\left(G\right)$  Compatibility

 • The GraphTheory[IntervalGraph] command was introduced in Maple 2016.