DifferentialGeometry/Tensor/PetrovTypeDetails - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/PetrovTypeDetails

Details for PetrovType

Description

• 

The command PetrovType uses the algorithm of M. A. Acvevedo, M. M. Enciso-Aguilar, J. Lopez-Bonilla, M. A. Acvevedo, Petrov classification of the conformal tensor, Electronic Journal of Theoretical Physics, Vol. 9, (2006), 79-82 to determine the Petrov type. The algorithm depends upon certain invariants calculated from the Newman Penrose Weyl scalars Ψ0,Ψ1,Ψ2,Ψ3,Ψ4. These invariants are:

G0=2Ψ0Ψ2Ψ12

G1=2Ψ0Ψ3Ψ1Ψ2

G2=Ψ02+Ψ0Ψ42 Ψ1Ψ3

G3=Ψ1Ψ4Ψ2Ψ3

G4=2Ψ2Ψ4Ψ32

G5=2Ψ1Ψ3Ψ22

 I=G2G5

J=Ψ3G1+12Ψ2G5+Ψ4G0

 If I3=27 J2 then λ is determined by λ2=13I and λ3=J and

 Mr=Gr+λΨr , r=0,1,2,3,4

 L=G2+2 G5+3 λΨ2

• 

The algorithm is as follows:

Step 1. If Ψ0=Ψ1=Ψ2=Ψ3=Ψ4=0, then the Petrov type is O.

Step 2. Otherwise, if G0=G1=G2=G3=G4=0, then the Petrov type is N.

Step 3. Otherwise, if I=J=0, then the Petrov type is III.

Step 4. Otherwise, if I327 J2, then the Petrov type is I.

Step 5. If I3=27 J2 and Mr=0 for r=0,1,2,3,4 and G2+2 G5+3 λΨ2=0, then the Petrov type is D.

Step 6. Otherwise, the Petrov type is II.