CongruenceProperties - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Tensor[CongruenceProperties] - calculate properties of a congruence of curves

Calling Sequences

     CongruenceProperties(g, U)

     CongruenceProperties(g, K, L)

     CongruenceProperties(g, K)

     CongruenceProperties(g, NT)

 

Parameters

     g     - a metric tensor

     U     - a unit vector

     K,L   - normalized null vectors, the vector K defines an affinely parameterized, geodesic null congruence. 

     NT    - a list of 4 vectors, defining a null tetrad, the first vector in the tetrad defines the geodesic null congruence.

 

 

Description

Examples

Description

• 

The command CongruenceProperties returns a table of properties associated to a line congruence defined by a unit (time-like or space-like) vector field U or a null vector field K.

• 

Let ϵ = gU, U = ±1, sethab = gabϵ UaUb . The following scalar and tensor fields are calculated by the first calling sequence.

 - Acceleration: Aa= Ubb Ua .

 - Expansion: Θ = aUa .

 - Rotation Tensor : ωab= 1/2 (b Ua a Ub  ϵAaUb + ϵAbUa) .

 - Shear Tensor: σab= 1/2 (b Ua +a Ub  ϵAaUb  ϵAbUa 1n1 Θ hab) .

• 

The left-hand side of the Raychaudhuri equation UaaΘ + Rab UaUb ωabωab + σabσab +N Θ2 = 0, valid when the congruence is geodesic (Aa=0), where Rab is the Ricci tensor and N = 1/n1, is also calculated.

• 

The first calling sequence returns a table with indices "Acceleration", "Expansion", "RotationTensor", "ShearTensor", "Raychaudhuri".

• 

The remaining three calling sequences apply only to an affinely parameterized, geodesic null congruence , that is, Ka Ka =0 and KbbKa = 0.

• 

The second calling sequence requires gK, K=0=gL, L,gK, L = α,where α = ±1. Sethab = gabα KaLb + Kb La and vab = hac hbd c Kd. Define

 - Expansion: Θ = aKa .

 - Rotation Tensor: ωab=12vab  vba.

 - Rotation Scalar: ω = α2εabcd LaKb c Kd .

 - Complex expansion: ρ =  12Θ+ I ω.

 - Shear Tensor: σab=12vab + vba 1/n2hab Θ.

The Raychaudhuri equation is as above but using these definitions of ω and σ and with N = 1/n2. 

• 

The second calling sequence returns a table with 8 indices "Expansion", "RotationNormSquared" "ShearNormSquared", "RotationTensor", "RotationScalar", "ShearTensor" , "ComplexExpansion" and "Raychaudhuri".

• 

The third calling sequence calculates: Expansion: Θ = aKa; Rotation norm squared = ωab ωab ; and Shear norm squared = σabσab . The definitions are as in the second calling sequence but, as these scalars do not in fact depend upon the choice of L, only the vector K is needed as input. The third calling sequence returns a table with indices "Expansion", "RotationNormSquared", "ShearNormSquared" and "Raychaudhuri".

• 

Finally, from the 4th calling sequence we set K = NT1, L =NT2, M = NT3 and M  = NT4 and calculate, in addition to the 8 quantities calculated for the second calling sequence , σ =  MaMb a Kb , referenced by the index sigma. In this case, the quantities ρ and σ are Newman-Penrose Spin Coefficients.

Examples

 

withDifferentialGeometry:withTensor:

 

Example 1.

For our first example we use the standard metric on the sphere.

DGsetupθ,φ,M

frame name: M

(2.1)

gevalDGR2dtheta&tdtheta+sinθ2dphi&tdphi

g:=R2dthetadtheta+R2sinθ2dphidphi

(2.2)

 

Define a unit vector field U.

M > 

UevalDG1RsinθD_phi

U:=D_phiRsinθ

(2.3)

 

We see that the congruence is geodesic on the equator ( θ = π/2) but is accelerating elsewhere. It is shearing, rotating and non-expanding.

M > 

CongruencePropertiesg,U

tableRaychaudhuri=1R2,Acceleration=cosθD_thetaR2sinθ,ShearTensor=0dthetadtheta,Expansion=0,RotationTensor=0dthetadtheta

(2.4)

 

Example 2.

For the next example we consider a class of Robinson-Trautman metrics. These are of Petrov type II and admit a null congruence which is shear-free.

M > 

DGsetupu,r,ζ,zetab,RT

frame name: RT

(2.5)
RT > 

gevalDG2r2Pζ,zetab,u2dzeta&sdzetab2du&sdr2Hζ,zetab,r,udu&tdu

g:=2Hζ,zetab,r,ududududrdrdu+r2dzetadzetabPζ,zetab,u2+r2dzetabdzetaPζ,zetab,u2

(2.6)

 

Here is a null tetrad for this metric.

RT > 

NTevalDGD_r,D_uHζ,zetab,r,uD_r,Pζ,zetab,urD_zeta,Pζ,zetab,urD_zetab

NT:=D_r,D_uHζ,zetab,r,uD_r,Pζ,zetab,uD_zetar,Pζ,zetab,uD_zetabr

(2.7)

 

The null congruence is very simple:

RT > 

UNT1

_DGvector,RT,,2,1

(2.8)

 

First calling sequence:

RT > 

CongruencePropertiesg,D_r

tableShearNormSquared=0,RotationNormSquared=0,Raychaudhuri=0,Expansion=2r

(2.9)

 

Third calling sequence:

RT > 

CongruencePropertiesg,NT1,NT2

tableShearNormSquared=0,RotationNormSquared=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=0dudu,Expansion=2r,RotationTensor=0dudu

(2.10)

 

Fourth calling sequence

RT > 

CongruencePropertiesg,NT

tableShearNormSquared=0,RotationNormSquared=0,sigma=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=0dudu,rho=1r,Expansion=2r,RotationTensor=0dudu

(2.11)

 

Example 3.

Here is an example of a Newman-Tamburino metric of Petrov type I and which admits a null geodesic congruence with non-vanishing shear.

RT > 

DGsetupu,r,x,y,M

frame name: M

(2.12)
M > 

gevalDGr2dx&tdx+x2dy&tdy2rxdu&sdx2du&sdr+1x2c+lnr2x4du&tdu

g:=c+lnr2x4dudux2dudrrdudxxdrdurdxdux+r2dxdx+x2dydy

(2.13)

 

Here is a null tetrad for this metric.

M > 

NTD_r,D_u+c+lnr2x4D_r2x2,sqrt2D_rx+sqrt2D_x2r+I12sqrt2D_yx,sqrt2D_rx+sqrt2D_x2rI12sqrt2D_yx

NT:=D_r,D_u+12c+lnr2x4D_rx2,2D_rx+122D_xr+12I2D_yx,2D_rx+122D_xr12I2D_yx

(2.14)

 

Again we consider the first leg of this tetrad.

M > 

UD_r

_DGvector,M,,2,1

(2.15)

 

First calling sequence:

RT > 

CongruencePropertiesg,U

tableShearNormSquared=12r2,RotationNormSquared=0,Raychaudhuri=0,Expansion=1r

(2.16)

 

Third calling sequence:

RT > 

CongruencePropertiesg,NT1,NT2

tableShearNormSquared=12r2,RotationNormSquared=0,Raychaudhuri=0,RotationScalar=0,ShearTensor=12rdxdx12x2dydyr,Expansion=1r,RotationTensor=0dudu

(2.17)

 

Fourth calling sequence:

RT > 

CongruencePropertiesg,NT

tableShearNormSquared=12r2,RotationNormSquared=0,sigma=12r,Raychaudhuri=0,RotationScalar=0,ShearTensor=12rdxdx12x2dydyr,rho=12r,Expansion=1r,RotationTensor=0dudu

(2.18)
M > 

 

See Also

DifferentialGeometry

Tensor

AdaptedSpinorDyad

AdaptedNullTetrad

NPCurvatureScalars

NullVector

PetrovType

PrincipalNullDirections