SubRepresentation - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LieAlgebras[SubRepresentation] - find the induced representation on an invariant subspace of the representation space

Calling Sequences

     SubRepresentation(ρ,S, W)

Parameters

     ρ       - a representation of a Lie algebra 𝔤 on a vector space V

     S       - a list of vectors in V whose span defines a ρ-invariant subspace of V

     W       - a Maple name or string, giving the frame name for the representation space for the subrepresentation

 

Description

Examples

Description

• 

If ρ: 𝔤  glV is a representation of a Lie algebra 𝔤 on a vector space V, then S is a ρ-invariant subspace of V if ρxY  S for all x  𝔤 and Y S. 

• 

The command SubRepresentation(ρ,S,W) returns the representation φ of 𝔤 on the vector space S defined by φxy =ρxY, where x  𝔤 and Y  S.

Examples

withDifferentialGeometry:withLieAlgebras:withLibrary:

 

Example 1.

We shall define a 4-dimensional representation ρ of a 4-dimensional Lie algebra taken from the DifferentialGeometry Library, find an invariant subspace S of ρ, and calculate the subrepresentation of ρ on S.

LRetrieveWinternitz,1,4,7,Alg1

L:=e1,e4=2e1,e2,e3=e1,e2,e4=e2,e3,e4=e2+e3

(2.1)

 

Initialize the Lie algebra Alg1.

V > 

DGsetupL:

 

Initialize the representation space V.

Alg1 > 

DGsetupx1,x2,x3,x4,V:

 

Define the matrices which specify a representation of Alg1 on V.

V > 

MMatrix0,0,0,2,0,0,0,0,0,0,0,0,0,0,0,0,Matrix0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,Matrix0,1,0,0,0,0,0,1,0,0,0,1,0,0,0,0,Matrix2,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0:

 

Define the representation with the Representation command.

V > 

ρRepresentationAlg1,V,M

 

Define a subspace S of V.

Alg1 > 

SD_x1,D_x2,D_x3

S:=D_x1,D_x2,D_x3

(2.2)

 

We can use the Query command to check that S is a ρ-invariant subspace.

V > 

Queryρ,S,InvariantSubspace

true

(2.3)

 

Define a frame for the induced representation of ρ on S.

V > 

DGsetupy1,y2,y3,W:

W > 

φSubRepresentationρ,S,W

Alg1 > 

Queryφ,Representation

true

(2.4)

See Also

DifferentialGeometry

Library

LieAlgebras

Query

Representation

Retrieve