DifferentialGeometry/LieAlgebras/Query/SolvableRepresentation - Maple Help

Query[SolvableRepresentation] - check if a representation of a Lie algebra is solvable

Calling Sequences

Query(

Parameters

rho       - a  representation of a Lie algebra

Description

 • Let g be a Lie algebra, a vector space and  a  representation.  This query returns true if for each the matrix is  upper triangular.

Examples

 > $\mathrm{with}\left(\mathrm{DifferentialGeometry}\right):$$\mathrm{with}\left(\mathrm{LieAlgebras}\right):$$\mathrm{with}\left(\mathrm{Library}\right):$

Example 1.

Retrieve the structure equations for a Lie algebra from the DifferentialGeometry  library.

 > $L≔\mathrm{Retrieve}\left("Winternitz",1,\left[4,7\right],\mathrm{alg1}\right)$
 ${L}{:=}\left[\left[{\mathrm{e1}}{,}{\mathrm{e4}}\right]{=}{2}{}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e3}}\right]{=}{\mathrm{e1}}{,}\left[{\mathrm{e2}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e2}}{,}\left[{\mathrm{e3}}{,}{\mathrm{e4}}\right]{=}{\mathrm{e2}}{+}{\mathrm{e3}}\right]$ (2.1)

Initialize the Lie algebra and create a 4-dimensional representation space.

 > $\mathrm{DGsetup}\left(L\right):$
 alg1 > $\mathrm{DGsetup}\left(\left[\mathrm{x1},\mathrm{x2},\mathrm{x3},\mathrm{x4}\right],V\right)$
 ${\mathrm{frame name: V}}$ (2.2)

 V > $\mathrm{\rho }≔\mathrm{Representation}\left(\mathrm{alg1},V,\mathrm{Adjoint}\left(\mathrm{alg1}\right)\right)$
 alg1 > $\mathrm{Query}\left(\mathrm{\rho },"SolvableRepresentation"\right)$
 ${\mathrm{true}}$ (2.3)