DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanSubalgebra

Query[CartanSubalgebra] - check if a list of vectors defines a Cartan subalgebra

Calling Sequences

     Query(A, options , CartanSubalgebra)

Parameters

     A        - a list of vectors, defining a subspace of a Lie algebra

     options  - one or more of the keyword arguments rank = n (where n  is a positive integer), algebratype  = "Semisimple" or  algebratype  = "Simple"

 

Description

Examples

Description

• 

Let 𝔤 be a Lie algebra. A Cartan subalgebra h is a nilpotent subalgebra whose normalizer in g is itself, that is, nor𝔥 = 𝔥 .

• 

If the Lie algebra 𝔤  is semi-simple and the rank of the Lie algebra is m, then any Cartan subalgebra is of dimension m and is Abelian. This simplifies checking if a given subspace of vectors is a Cartan subalgebra ( the nilpotent character of h need not be verified).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We test if certain subalgebras of sl3 are Cartan subalgebras. First define the standard matrix representation for sl3 as the space of 3 × 3 trace-free matrices.

 

Amapconvert,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,Matrix

 

Calculate the structure equations for these matrices and initialize the resulting Lie algebra.

LDLieAlgebraDataA,sl3

LD:=e1,e3=2e3,e1,e4=e4,e1,e5=2e5,e1,e6=e6,e1,e7=e7,e1,e8=e8,e2,e3=e3,e2,e4=e4,e2,e5=e5,e2,e6=2e6,e2,e7=e7,e2,e8=2e8,e3,e5=e1,e3,e6=e4,e3,e7=e8,e4,e5=e6,e4,e7=e1+e2,e4,e8=e3,e5,e8=e7,e6,e7=e5,e6,e8=e2

(2.1)

DGsetupLD

Lie algebra: sl3

(2.2)

 

Let's check that sl3 is semi-simple.

sl3 > 

Querysl3,Semisimple

true

(2.3)

 

Test to see if a list of vectors defines a Cartan subalgebra.

sl3 > 

Ae1,e2

A:=e1,e2

(2.4)
sl3 > 

QueryA,CartanSubalgebra

true

(2.5)

 

 Since A  has 2 elements, this implies that the rank of  sl3  is 2. We can use this information to simplify checking that other subalgebras are Cartan subalgebras

sl3 > 

AevalDGe1+e6,e22e6

A:=e1+e6,e22e6

(2.6)
sl3 > 

QueryA,rank=2,algebratype=Semisimple,CartanSubalgebra

true

(2.7)

 

Here is a 2-dimensional Abelian subalgebra which is not self-normalizing and therefore not a Cartan subalgebra.

sl3 > 

Ae3,e4

A:=e3,e4

(2.8)
sl3 > 

QueryA,CartanSubalgebra

false

(2.9)
sl3 > 

SubalgebraNormalizerA

e8,e6,e4,e3,e2,e1

(2.10)

 

Example 2.

The notion of a Cartan subalgebra is not restricted to semi-simple Lie algebras. We define a solvable Lie algebra and test to see if some subalgebras are Cartan subalgebras.

sl3 > 

LD_DGLieAlgebra,alg,5,1,4,1,a,2,4,2,1,3,4,3,1,1,5,1,1,3,5,2,1

LD:=e1,e4=ae1,e1,e5=e1,e2,e4=e2,e3,e4=e3,e3,e5=e2

(2.11)
sl3 > 

DGsetupLD

Lie algebra: alg

(2.12)
alg > 

QuerySolvable

true

(2.13)
alg > 

Ae4,e5

A:=e4,e5

(2.14)
alg > 

QueryA,CartanSubalgebra

true

(2.15)

 

Any subalgebra which is an ideal cannot be a Cartan subalgebra.

alg > 

Ae1,e2

A:=e1,e2

(2.16)
alg > 

QueryA,Ideal

true

(2.17)
alg > 

QueryA,CartanSubalgebra

false

(2.18)

See Also

DifferentialGeometry

CartanSubalgebra

LieAlgebraData

Query[Ideal]

Query[Solvable]

Query[Subalgebra]

Query[Semisimple]