DifferentialGeometry/LieAlgebras/Query/CartanDecomposition - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/LieAlgebras/Query/CartanDecomposition

Query[CartanDecomposition] - check that two subspaces in a Lie algebra define a Cartan decomposition.

Calling Sequences

     Query(T, P, CartanDecomposition)

Parameters

     T   - a list of vectors, defining a subalgebra of a Lie algebra on which the Killing form is negative-definite.

      P   - a list of vectors, defining a subspace of a Lie algebra on which the Killing form is positive-definite

     

 

Description

Examples

Description

• 

Let g be a semi-simple real Lie algebra. Then g is called compact if the Killing form  ,  of g is negative-definite, otherwise  g is called non-compact.  

• 

A Cartan decomposition is a vector space decomposition g = tp , where [i] t is a subalgebra, [ii] p is a subspace, [iii] [t, p] ⊆ p, [iv] [p, p] ⊆ t, [v] the Killing form is negative-definite on t and [vi] Killing form is positive-definite on p.  

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

We check to see if some decompositions of sl2 are Cartan decompositions. Initialize the Lie algebra sl2.

LDLieAlgebraDatah,x=2x,h,y=2y,x,y=h,h,x,y,sl2

LD:=e1,e2=2e2,e1,e3=2e3,e2,e3=e1

(2.1)

DGsetupLD

Lie algebra: sl2

(2.2)

 

The decomposition T1, P1 gives a Cartan decomposition.

T1,P1evalDGe2e3,evalDGe1,e2+e3

T1,P1:=e2e3,e1,e2+e3

(2.3)

QueryT1,P1,CartanDecomposition

true

(2.4)

 

The decomposition T2,  P2 gives a symmetric pair but not a Cartan decomposition.

T2,P2evalDGe2+e3,evalDGe1,e2e3

T2,P2:=e2+e3,e1,e2e3

(2.5)

QueryT2,P2,CartanDecomposition

false

(2.6)
sl2 > 

QueryT2,P2,SymmetricPair

true

(2.7)
sl2 > 

KillingP2

See Also

DifferentialGeometry

CartanInvolution

Killing

Query[SymmetricPair]

Query[ReductivePair]