find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : DifferentialGeometry/LieAlgebras/Killing

LieAlgebras[Killing] - find the Killing form (matrix) of a Lie algebra, evaluate the Killing form on a pair of vectors, evaluate the Killing form on a subspace

LieAlgebras[KillingForm] - find the Killing form (symmetric tensor) of a Lie algebra

Calling Sequences

     Killing(x, y)

     Killing(Alg)

     Killing(h)

     KilllingForm(Alg)

Parameters

     x,y      - a pair of vectors in a Lie algebra 𝔤

     Alg      - (optional) the name of a Lie algebra

     h        - a list of vectors defining a basis for a subspace of a Lie algebra 𝔤

 

Description

Examples

Description

• 

The Killing form on a ndimensional Lie algebra 𝔤  is the symmetric quadratic form B defined by  Bx, y =traceadxady for any x, y  𝔤 . Here adx and ady are the adjoint matrices for the vectors x and y. In terms of the structure constants Cijk with respect to the basis {ei }for 𝔤,one has bij = Bei, ej =k,ℓ =1nCiℓk Ckjℓ . If 𝔥  𝔤 is a subspace with basis x1, x2, ... ,xp, then the restriction of the Killing form to 𝔥 is given by the p ×p matrix b rs = Bxr, xs.

• 

 Killing() returns the n ×n symmetric matrix bij for the Lie algebra defined by the current frame. Killing(Alg) returns the n ×n symmetric matrix bij for the Lie algebra Alg. Alg.Killing(h) returns the Killing Matrix b rs restricted to the subalgebra 𝔥.

• 

KillingForm(Alg) returns the symmetric rank 2-tensor bij θi  θj, where the {θi} are the dual 1-forms to the basis {ei }.

• 

The command Killing is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form Killing(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-Killing(...).

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

First initialize a Lie algebra and display the Lie bracket multiplication table.

L1_DGLieAlgebra,Alg1,3,2,3,1,1,1,3,2,1,1,2,3,1:

Alg1   > 

DGsetupL1:

MultiplicationTableLieBracket

e1,e2=e3,e1,e3=e2,e2,e3=e1

(2.1)

 

Compute the Killing form on the vectors x = e1 + e2 and y = e1  e2 +e3.

Alg1 > 

XevalDGe1+e3

X:=e1+e3

(2.2)
Alg1 > 

YevalDGe1e2+e3

Y:=e1e2+e3

(2.3)
Alg1 > 

KillingX,Y

4

(2.4)

 

Compute the Killing form for the current Lie algebra.

Alg1 > 

KKilling

K:=200020002

(2.5)

 

Compute the Killing form restricted to the subspace S = spane2, e3.

Alg1 > 

Se2,e3:

Alg1 > 

KillingS

2002

(2.6)

 

Example 2.

 Here is the Killing form for the Lie algebra from Example 1, given as a symmetric, covariant tensor on the Lie algebra.

KillingFormAlg1

2θ1θ12θ2θ22θ3θ3

(2.7)

 

 

 

See Also

DifferentialGeometry

LieAlgebras

Adjoint

MultiplicationTable

Query[Semisimple]