DirectSumOfRepresentations - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : DirectSumOfRepresentations

LieAlgebras[DirectSumOfRepresentations] - form the direct sum representation for a list of representations of a Lie algebra

Calling Sequences

     DirectSumOfRepresentations(R, W)

Parameters

     R         - a list of representations ρ1, ρ2, ... of a Lie algebra 𝔤 on vector spaces V1, V2, ... .

     W         - a Maple name or string, the name of the frame for the representation space for the direct sum representation

 

Description

Examples

Description

• 

 Let 𝔤 be a Lie algebra and let ρi : 𝔤  Vi , i = 1, 2, ...,  p be a sequence of representations of 𝔤. Then the direct sum representation of the representationsρi is the representation σ : 𝔤  W, where W = V1V2  Vp  and

σxY  = ρ1xY1 + ρ2xY2 ++ ρpxYp   for  Y = Y1 + Y2 +  + Yp with Yi Vi.

• 

The command DirectSumOfRepresentations(R, W) returns the representation σ.

Examples

withDifferentialGeometry:withLieAlgebras:

 

Example 1.

Define the standard representation and the adjoint representation for sl2. Then form the direct sum representation. First, setup the representation spaces.

DGsetupx1,x2,V1:

V1 > 

DGsetupy1,y2,y2,V2:

V2 > 

DGsetupz1,z2,z3,z4,z5,W1:

W1 > 

DGsetupz1,z2,z3,z4,z5,z6,W2:

 

Define the standard representation.

W2 > 

M1Matrix0,1,0,0,Matrix1,0,0,1,Matrix0,0,1,0

W2 > 

LLieAlgebraDataM1,sl2

L:=e1,e2=2e1,e1,e3=e2,e2,e3=2e3

(2.1)
W2 > 

DGsetupL

Lie algebra: sl2

(2.2)
sl2 > 

ρ1Representationsl2,V1,M1

 

Define the adjoint representation.

sl2 > 

ρ2Representationsl2,V2,Adjoint

 

Define the direct sum representation of ρ1and ρ2

sl2 > 

φ1DirectSumOfRepresentationsρ1,ρ2,W1

sl2 > 

Queryφ1,Representation

true

(2.3)

 

Define the direct sum of 3 copies of ρ1.

sl2 > 

φ2DirectSumOfRepresentationsρ1,ρ1,ρ1,W2

sl2 > 

Queryφ2,Representation

true

(2.4)

See Also

DifferentialGeometry

LieAlgebras

Representation