Restore - Maple Help

# Online Help

###### All Products    Maple    MapleSim

DeepLearning

 Restore
 save and restore sessions
 Save
 save and restore sessions

 Calling Sequence Restore(path) Save(path,model)

Parameters

 path - string; path to saved model model - model object

Description

 • The Restore(path) command loads a saved model or computation session to memory from a file located at path.
 • The Save(path) command saves a model or computation session in memory to a file located at path.
 • These functions are part of the DeepLearning package, so they can be used in the short form Restore(..) and Save(..) only after executing the command with(DeepLearning). However, they can always be accessed through the long form of the command by using DeepLearning[Restore](..) or DeepLearning[Save](..).

Details

 • For more information about saving models, see the TensorFlow Python API documentation for saved models.

Examples

Examples of Einstein summation on vectors

 > $\mathrm{with}\left(\mathrm{DeepLearning}\right):$
 > $v≔\mathrm{Variable}\left(\left[1.0,0.5\right],\mathrm{datatype}=\mathrm{float}\left[8\right]\right)$
 ${v}{≔}\left[\begin{array}{c}{\mathrm{DeepLearning Tensor}}\\ {\mathrm{Name: Variable:0}}\\ {\mathrm{Shape: undefined}}\\ {\mathrm{Data Type: float\left[8\right]}}\end{array}\right]$ (1)
 > $c≔\mathrm{Constant}\left(\left[1.5,3.0\right],\mathrm{datatype}=\mathrm{float}\left[8\right]\right)$
 ${c}{≔}\left[\begin{array}{c}{\mathrm{DeepLearning Tensor}}\\ {\mathrm{Name: none}}\\ {\mathrm{Shape: undefined}}\\ {\mathrm{Data Type: float\left[8\right]}}\end{array}\right]$ (2)
 > $\mathrm{AssignAdd}\left(v,c\right)$
 > $\mathrm{sess}≔\mathrm{GetDefaultSession}\left(\right)$
 > $\mathrm{sess}:-\mathrm{Run}\left(\mathrm{VariablesInitializer}\left(\right)\right)$
 > $\mathrm{Save}\left("/tmp/model.ckpt"\right)$
 > $\mathrm{Restore}\left("/tmp/model.ckpt"\right)$

Compatibility

 • The DeepLearning[Restore] and DeepLearning[Save] commands were introduced in Maple 2018.
 • For more information on Maple 2018 changes, see Updates in Maple 2018.

 See Also