DeepLearning - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Programming : DeepLearning Package : Tensors : Managing Tensors : DeepLearning/Concatenate

DeepLearning

  

Concatenate

  

concatenate multiple Tensors

 

Calling Sequence

Parameters

Options

Description

Examples

Compatibility

Calling Sequence

Concatenate(L,axis,opts)

Parameters

L

-

list or Array of Tensors

axis

-

nonnegint; axis on which to join Tensors

opts

-

zero or more options as specified below

Options

• 

name = string

  

The value of option name specifies an optional name for this Tensor, to be displayed in output and when visualizing the dataflow graph.

Description

• 

The Concatenate(L,axis,opts) command concatenates the list of Tensor objects L along the dimension specified by the zero-based index axis.

• 

For example, if Tensors T1 and T2 have shape [2,3] and [4,3] respectively, then Concatenate([T1,T2],0) would join T1 and T2 in the first index, producing a Tensor with shape [6,3].

• 

This function is part of the DeepLearning package, so it can be used in the short form Concatenate(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[Concatenate](..).

Examples

withDeepLearning:

t1Ones3,2

t1DeepLearning TensorName: ones:0Shape: [3, 2]Data Type: float[4]

(1)

t2Zeros3,4

t2DeepLearning TensorName: zeros:0Shape: [3, 4]Data Type: float[4]

(2)

t3Concatenatet1,t2,1

t3DeepLearning TensorName: concat:0Shape: [3, 6]Data Type: float[4]

(3)

Shapet3

3,6

(4)

Compatibility

• 

The DeepLearning[Concatenate] command was introduced in Maple 2018.

• 

For more information on Maple 2018 changes, see Updates in Maple 2018.

See Also

DeepLearning Overview