riccati matrix - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


DEtools

  

matrix_riccati

  

solve a Matrix Riccati differential equation

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

matrix_riccati(A, K, Z0, t)

matrix_riccati(A, K, Z0, t=t0)

matrix_riccati(A, K, t)

matrix_riccati(A, K, t=t0)

Parameters

A, K

-

Matrix coefficients of the Riccati Matrix Equation

Z0

-

Matrix representing the initial conditions for t=t0

t

-

independent variable

t0

-

position of initial conditions

Description

• 

The Matrix Riccati differential equation is

Z' t=Zt·At·Zt+Zt·Kt+transposeKt·Zt

  

with

Zt0=Z0

  

where Z,A,K, and Z0 are n by n matrices. matrix_riccati returns the solution, Z.

• 

The command with(DEtools,matrix_riccati) allows the use of the abbreviated form of this command.

Examples

withDEtools:

The unknowns are xt,yt

ZMatrixxt,yt,yt,xt

Zxtytytxt

(1)

A simple example would be

AMatrixt,1,1,t

At11t

(2)

KMatrixc,0,0,c

Kc00c

(3)

The matrix with the initial values xt0 and yt0 is

Z0Matrix_C1,_C2,_C2,_C1

Z0_C1_C2_C2_C1

(4)

The system of equations represented by these matrices is thus

sysmapdiff,Z,t=Z·A·Z+Z·K+K%T·Z

sysⅆⅆtxtⅆⅆtytⅆⅆtytⅆⅆtxt=xtt+ytxt+xt+yttyt+2xtcxtt+ytytxt+yttxt+2ytcyttxtxt+xtt+ytyt+2ytcyttxtytxtt+ytxt2xtc

(5)

The two coupled odes are

ode1lhssys1,1=rhssys1,1

ode1ⅆⅆtxt=xtt+ytxt+xt+yttyt+2xtc

(6)

ode2lhssys1,2=rhssys1,2

ode2ⅆⅆtyt=xtt+ytytxt+yttxt+2ytc

(7)

The matrix solution to this matrix system of equations with initial conditions Z0 at t0=0 is computed as:

matrix_solmatrix_riccatiA,K,Z0,t=0:

Recalling the form of Z, the solution to the system of odes is constructed from matrix_sol as

solxt=matrix_sol1,1,yt=matrix_sol1,2

solxt=4ⅇtc2c22ⅇ2tc_C12ct+2ⅇ2tc_C22ctⅇ2tc_C12ⅇ2tc_C22+4_C1c2+_C12+_C224ⅇ2tc2_C12c2t2+4ⅇ2tc2_C22c2t2+4ⅇ2tc2_C12c24ⅇ2tc2_C12ct+4ⅇ2tc2_C22c24ⅇ2tc2_C22ct+16ⅇ2tc_C1c3t8ⅇ2tc_C12c2+4ⅇ2tc_C12ct8ⅇ2tc_C22c2+4ⅇ2tc_C22ct16ⅇ2tc_C2c3+ⅇ2tc2_C12+ⅇ2tc2_C228ⅇ2tc_C1c2+4_C12c2+4_C22c2+16_C2c3+16c42ⅇ2tc_C122ⅇ2tc_C22+8_C1c2+_C12+_C22,yt=8ⅇtc2c3ⅇ2tc_C12+ⅇ2tc_C22_C12_C222_C2c4ⅇ2tc2_C12c2t2+4ⅇ2tc2_C22c2t2+4ⅇ2tc2_C12c24ⅇ2tc2_C12ct+4ⅇ2tc2_C22c24ⅇ2tc2_C22ct+16ⅇ2tc_C1c3t8ⅇ2tc_C12c2+4ⅇ2tc_C12ct8ⅇ2tc_C22c2+4ⅇ2tc_C22ct16ⅇ2tc_C2c3+ⅇ2tc2_C12+ⅇ2tc2_C228ⅇ2tc_C1c2+4_C12c2+4_C22c2+16_C2c3+16c42ⅇ2tc_C122ⅇ2tc_C22+8_C1c2+_C12+_C22

(8)

This result can be verified with odetest

odetestsol,ode1,ode2

0,0

(9)

See Also

dsolve

odetest

riccati_system

riccatisol