NumberTheory
PseudoPrimitiveRoot
pseudo primitive root modulo n
Calling Sequence
Parameters
Description
Examples
Compatibility
PseudoPrimitiveRoot(n, options)
n
-
positive integer
options
(optional) at most one of greaterthan = m or ith = i, where m is a non-negative integer and i is a positive integer
The PseudoPrimitiveRoot(n) command returns the smallest pseudo primitive root modulo n, if it exists.
The PseudoPrimitiveRoot(n, greaterthan = m) command returns the smallest pseudo primitive root modulo n greater than m.
The PseudoPrimitiveRoot(n, ith = i) command returns the ith smallest pseudo primitive root modulo n.
If the required pseudo primitive root does not exist, then an error message is displayed.
A pseudo primitive root is an integer such that and are coprime, and there does not exist an integer such that where is a divisor of not equal to .
If a primitive root modulo n exists, then the pseudo primitive roots are exactly the primitive roots.
There does not exist a primitive root modulo but there are three pseudo primitive roots modulo .
Error, (in NumberTheory:-PrimitiveRoot) there does not exist a primitive root modulo 8
An error message is displayed when the desired pseudo primitive root does not exist.
Error, (in NumberTheory:-PseudoPrimitiveRoot) there exist only 3 pseudo primitive roots modulo 8
Error, (in NumberTheory:-PseudoPrimitiveRoot) there does not exist a pseudo primitive root modulo 8 greater than 7
The NumberTheory[PseudoPrimitiveRoot] command was introduced in Maple 2016.
For more information on Maple 2016 changes, see Updates in Maple 2016.
See Also
NumberTheory[MultiplicativeOrder]
NumberTheory[PrimitiveRoot]
Download Help Document