Product - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

product

definite and indefinite product

Product

inert form of product

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

product(f,k)

kf

product(f,k=m..n)

k=mnf

product(f,k=alpha)

k=αf

product(f,k=expr)

k=exprf

Product(f,k)

kf

Product(f,k=m..n)

k=mnf

Product(f,k=alpha)

k=αf

Product(f,k=expr)

k=exprf

Parameters

f

-

expression

k

-

name, the product index

m, n

-

integers or arbitrary expressions

alpha

-

RootOf

expr

-

expression not containing k

Description

• 

The product command is for computing symbolic products. It is used to compute a formula for an indefinite or definite product. If a formula cannot be computed, Maple returns the product unevaluated. A typical example would be product(x+k, k=0..n-1) which returns the formula GAMMA(x+n)/GAMMA(x). If you want to multiply a finite sequence of values, rather than compute a formula, use the mul command.  For example mul(x+k, k=0..2) returns x*(x+1)*(x+2). Although the product command can be used to compute explicit products, the mul command should be used in programs for explicit products.

• 

You can enter the product command using either the 1-D or 2-D calling sequence.  For example, product(x+k, k=0..n-1) is equivalent to k=0n1x+k.

• 

The call product(f, k) computes the indefinite product of f(k) with respect to k. That is, it computes a formula g such that g(k+1)/g(k) = f(k) for all k.

• 

The call product(f, k = m..n) computes the definite product of f(k) over the given range m..n, that is, it computes f(m) f(m+1) ... f(n). The definite product is equivalent to g(n+1)/g(m) where g is the indefinite product. For example, product(n,n) = product(k, k=1..n-1) = GAMMA(n).

• 

If m = n+1 then the value returned is 1. If m > n+1 then 1/product(f, k=n+1..m-1) is the value returned.

• 

The call product(f, k= alpha) computes the definite product of f(k) over the roots of a polynomial where alpha must be a RootOf.

• 

The call product(f, k= expr) substitutes the value of expr for k in f.

• 

If Maple cannot find a closed form for the product, the function call itself is returned. (The prettyprinter displays the product function using a stylized product sign.)

• 

The capitalized function name Product is the inert product function, which simply returns unevaluated.  It appears gray so that it is easily distinguished from a returned product calling sequence.

Examples

productk2,k=1..4

576

(1)

For a finite sequence of values, use the mul command.

mulk2,k=1..4

576

(2)

productk2,k=1..n

Γn+12

(3)

productk2,k

Γk2

(4)

productak,k=0..4

a0a1a2a3a4

(5)

productak,k=0..n

k=0nak

(6)

Productn+k,k=0..m=productn+k,k=0..m

k=0mn+k=Γn+m+1Γn

(7)

productkx,k=1..5

120x5

(8)

productk,k=x..5x

Γ5x+1Γx

(9)

product1k,k=1..

0

(10)

Compatibility

• 

The product command was updated in Maple 2016; see Advanced Math.

See Also

mul

resultant

RootOf

sum

 


Download Help Document