Chebyshev - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

convert/Chebyshev

convert special functions admitting 2F1 hypergeometric representation into Chebyshev functions

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

convert(expr, Chebyshev)

Parameters

expr

-

Maple expression, equation, or a set or list of them

Description

• 

convert/Chebyshev converts, when possible, special functions admitting a 2F1 hypergeometric representation into Chebyshev functions (see ?ChebyshevT and ?ChebyshevU). The Chebyshev functions are

FunctionAdvisor( Chebyshev );

The 2 functions in the "Chebyshev" class are:

ChebyshevT,ChebyshevU

(1)

Examples

a+1hypergeoma,a+2,32,1212z

a+1hypergeoma,a+2,32,12z2

(2)

convert,Chebyshev

ChebyshevUa,z

(3)

JacobiPa+b,12,12,12z+JacobiPab,12,12,12z

JacobiPa+b,12,12,z2+JacobiPab,12,12,z2

(4)

convert,Chebyshev

a+b1212ChebyshevTab,z2+ab+1212ChebyshevUab,z2ab+1

(5)

1π12sinπaaMeijerG1a,a+1,,0,12,12+12z

sinπaaMeijerG1a,a+1,,0,12,12+z2π

(6)

simplifyconvert,Chebyshev

ChebyshevTa,z

(7)

When converting to a function class (e.g. Chebyshev) it is possible to request additional conversion rules to be performed. Compare for instance these two different outputs:

GegenbauerCa,1,z

GegenbauerCa,1,z

(8)

convert,Chebyshev

ChebyshevUa,z

(9)

convert,Chebyshev,raise a

ChebyshevU4a,z2zChebyshevU3a,z

(10)

See Also

convert

convert/to_special_function

FunctionAdvisor

 


Download Help Document