GroupTheory
Steinberg2E6
Calling Sequence
Parameters
Description
Examples
Compatibility
Steinberg2E6( q )
q
-
algebraic; an algebraic expression, taken to be a prime power
The Steinberg group E62q , for a prime power q, is a simple group of Lie type.
The Steinberg2E6( q ) command returns a symbolic group representing the Steinberg group E62q .
withGroupTheory:
G≔Steinberg2E62
G≔E622
typeG,Group
true
typeG,PermutationGroup
false
GroupOrderG
76532479683774853939200
MinPermRepDegreeG
3968055
IsSimpleG
IsSimpleSteinberg2E64096
GroupOrderSteinberg2E627
4423616655215750021498369285918192558448382923930662108203473523560591980763988390542885164349041907752671641600
ClassNumberSteinberg2E632
1109537246
G≔Steinberg2E6q
G≔E62q
ClassNumberG
q6+q5+2q4+4q3+11q2+11q+16iremq,6=112q2+14q+30iremq,6=211q2+11q+15iremq,6=310q2+10q+14iremq,6=413q2+15q+34iremq,6=5
The GroupTheory[Steinberg2E6] command was introduced in Maple 2021.
For more information on Maple 2021 changes, see Updates in Maple 2021.
See Also
GroupTheory[ClassNumber]
GroupTheory[ExceptionalGroup]
GroupTheory[GroupOrder]
GroupTheory[IsSimple]
GroupTheory[MinPermRepDegree]
GroupTheory[Steinberg3D4]
Download Help Document