PaleyGraph - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GraphTheory[SpecialGraphs]

  

PaleyGraph

  

construct Paley graph

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

PaleyGraph(p)

PaleyGraph(p,k)

PaleyGraph(p,k,m)

Parameters

p

-

prime integer

k

-

positive integer

m

-

irreducible univariate polynomial of degree k over GF(p)

Description

• 

If the input is PaleyGraph(p) where p is congruent to 1 modulo 4, then the output is an unweighted undirected graph G on p vertices labeled 0,1,...,p-1 where the edge {i,j}, with i<j, is in G iff j-i is a quadratic residue in Zp.

• 

If the input is PaleyGraph(p) where p is congruent to 3 modulo 4, then the output is an unweighted directed graph G on p vertices labeled 0,1,...,p-1 where the arc [i,j] is in G iff j-i is a quadratic residue in Zp.

• 

If the input is PaleyGraph(p,k) where  is congruent to 1 modulo 4, then the output is an unweighted undirected graph G on  vertices labeled 0,1,...,q-1 where the edge {i,j}, i<j, is in G iff y-x is a square in the finite field GF(q), where x is the th element and y is the th element in GF(q). The numbering of the elements in GF(q) is lexicographical.

• 

Similarly, if the input is PaleyGraph(p,k) where  is congruent to 3 modulo 4, then the output is an unweighted directed graph G on  vertices labeled 0,1,...,q-1 where the arc [i,j] is in G iff y-x is a square in the finite field GF(q), where x is the th element and y is the th element in GF(q). The numbering of the elements in GF(q) is lexicographical.

• 

The vertex label for the element f(x) in Zp[x] is f(p). For example, in GF(23) the elements are ordered . Thus the label for element  is .

• 

The field can be specified by the user by specifying the extension polynomial for GF(q), a monic irreducible polynomial m(x) in Zp[x] of degree k.

Examples

(1)

(2)

(3)

(4)

(5)

See Also

SpecialGraphs

 


Download Help Document