CurvatureTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Tensor[CurvatureTensor] - calculate the curvature tensor of a linear connection on the tangent bundle or on a vector bundle

Calling Sequences

    CurvatureTensor(g)  

    CurvatureTensor(C)

Parameters

   g    - a metric on the tangent bundle of a manifold

   C    - a connection on the tangent bundle of a manifold or on a vector bundle

 

Description

Examples

See also

Description

• 

Let  be a connection on the tangent bundle of a manifold  and let  be the module of all vector fields on . The curvature tensor of is the type  tensor  (contravariant rank 1, covariant rank 3) which, when viewed as a linear map , is given by

 

Here, , and  are vector fields on and  denotes the set of linear mappings .

• 

More generally, let  be a connection on a vector bundle  and let  be the module of all sections of . The curvature tensor of  when viewed as a linear map , is given by

 Here  and  are vector fields on  and  is a section of .

• 

 The first calling sequence computes the Christoffel symbol of the input metric  and returns the Riemann curvature tensor on the tangent bundle as a tensor of type . The index type of the output is ["con_bas", "cov_bas", "cov_bas", "cov_bas"]. See TensorIndexType.

• 

The second calling sequence returns the curvature tensor of the input connection . The index type of the output is ["con_vrt", "cov_vrt", "cov_bas", "cov_bas"]. See TensorIndexType.

• 

The first Bianchi identity for the curvature tensor of a connection on the tangent bundle of a manifold asserts that

  Here  is the torsion tensor of the connection, and  is the contraction of  over the 3rd and 4th indices.

• 

The second Bianchi Identity asserts that . Here  denotes the contraction of  on the third and fifth indices.

• 

This command is part of the DifferentialGeometry:-Tensor package, and so can be used in the form CurvatureTensor(...) only after executing the command with(DifferentialGeometry) and with(Tensor) in that order. It can always be used in the long form DifferentialGeometry:-Tensor:-CurvatureTensor.

Examples

 

Example 1.

First create a 3 dimensional manifold  and define a metric on the tangent space of .

(2.1)
M > 

(2.2)

 

Calculate the curvature tensor for the metric .

M > 

(2.3)

 

 

Example 2.

First create a 3 dimensional manifold  and define a connection on the tangent space of .

M > 

(2.4)
M > 

(2.5)
M > 

(2.6)

 

Here are two simple procedures we shall use for checking the Bianchi identities.

Bianchi1 := proc(R, C)

M > 

end:

 

Bianchi2 := proc(R, C)

M1 > 

end:

 

Use the above programs to check the Bianchi identities.

M > 

(2.7)
M > 

(2.8)

 

Example 3.

Define a frame on  and use this frame to specify a connection on the tangent space of .

M > 

(2.9)
M > 

M > 

(2.10)
M1 > 

(2.11)
M1 > 

(2.12)

 

Use the above programs to check the Bianchi identities.

M1 > 

(2.13)
M1 > 

(2.14)

 

Example 4.

First create a rank 3 vector bundle  and define a connection on .

M1 > 

(2.15)
E > 

(2.16)
E > 

(2.17)

See also

Physics[Riemann], DifferentialGeometry, Tensor, Christoffel, Physics[Christoffel], Connection, CovariantDerivative, Physics[D_], SectionalCurvature, RicciScalar, RicciTensor, Physics[Ricci], TorsionTensor, Physics[Weyl]


Download Help Document