GeneratingFunctionToContactVector - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : JetCalculus : GeneratingFunctionToContactVector

JetCalculus[GeneratingFunctionToContactVector] - find the contact vector field defined by a generating function

Calling Sequences

     GeneratingFunctionToContactVector(S)

Parameters

     S         - a Maple expression

 

Description

Examples

Description

• 

 Let be a fiber bundle with 1-dimensional fiber and let  be 1st order jet space of In terms of the usual coordinates on the contact form on  is . A vector field on which preserves the contact form in the sense that is called an infinitesimal contact transformation or a contact vector field. There is a formula which assigns to each locally defined real-valued function on a contact vector field The function  is called the generating function for the contact vector field . In terms of the local coordinates , we have and

 .

  For further details see P. J. Olver,  Equivalence, Invariants and Symmetry, page 131.

• 

The command GeneratingFunctionToContactVector(S) returns the contact vector field defined by the function S.

• 

The command GeneratingFunctionToContactVector is part of the DifferentialGeometry:-JetCalculus package. It can be used in the form GeneratingFunctionToContactVector(...) only after executing the commands with(DifferentialGeometry) and with(JetCalculus), but can always be used by executing DifferentialGeometry:-JetCalculus:-GeneratingFunctionToContactVector(...).

Examples

 

Example 1.

The formula for the contact vector field in terms of the generating function with 1 independent variable.

J11 > 

J11 > 

(2.1)

 

The formula for the contact vector field in terms of the generating function with 2 independent variables.

J11 > 

J21 > 

J21 > 

(2.2)

 

The formula for the contact vector field in terms of the generating function with 3 independent variables.

J21 > 

J31 > 

J31 > 

(2.3)

 

Example 2.

We choose some specific generating functions and calculate the resulting contact vector fields.

J31 > 

J21 > 

J21 > 

(2.4)
J21 > 

J21 > 

(2.5)
J21 > 

J21 > 

(2.6)

 

Example 3.

Check the properties of the vector field obtained from  .

J21 > 

J21 > 

(2.7)

 

 preserves the contact 1-form.

J21 > 

(2.8)

 

 is the prolongation of its projection to the space of independent and dependent variables.

J21 > 

(2.9)
J21 > 

(2.10)
J21 > 

(2.11)
J21 > 

(2.12)

 

Example 4.

We use the commands GeneratingFunctionToContactVector and Flow to find a contact transformation.

J21 > 

J21 > 

(2.13)
J21 > 

(2.14)

 

Check that  is a contact transformation.

J21 > 

(2.15)

 

We note that  takes on a simple form for  and that it linearizes the Monge-Ampere equation .

J21 > 

(2.16)
J21 > 

(2.17)
J21 > 

(2.18)
J21 > 

(2.19)

See Also

DifferentialGeometry

JetCalculus

Flow

LieDerivative

ProjectionTransformation

Prolong

Pullback

Pushforward

AssignVectorType

 


Download Help Document