networks(deprecated)/complete - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Home : Support : Online Help : networks(deprecated)/complete

networks

 complete
 generate a complete graph

 Calling Sequence complete(n) complete(m, n) complete(m1,..., mk) complete(vset)

Parameters

 n - integer indicating the number of vertices in the given part m - integer indicating the number of vertices in the given part m1, ..., mk - sequence of integers indicating the number of vertices in each part vset - set of vertex names

Description

 • Important: The networks package has been deprecated.  Use the superseding command GraphTheory[CompleteGraph] instead.
 • This procedure generates various types of complete graphs.  The number of arguments indicates the number of parts.  Each part is specified by an integer indicating the number of vertices in that part.  For example a complete bipartite graph is specified as complete(m, n).
 • In the case of one argument a set vset of vertex names may be specified.
 • This routine is normally loaded via the command with(networks) but may also be referenced using the full name networks[complete](...).

Examples

Important: The networks package has been deprecated.  Use the superseding command GraphTheory[CompleteGraph] instead.

 > $\mathrm{with}\left(\mathrm{networks}\right):$
 > $G≔\mathrm{complete}\left(10\right):$
 > $\mathrm{edges}\left(G\right)$
 $\left\{{\mathrm{e1}}{,}{\mathrm{e10}}{,}{\mathrm{e11}}{,}{\mathrm{e12}}{,}{\mathrm{e13}}{,}{\mathrm{e14}}{,}{\mathrm{e15}}{,}{\mathrm{e16}}{,}{\mathrm{e17}}{,}{\mathrm{e18}}{,}{\mathrm{e19}}{,}{\mathrm{e2}}{,}{\mathrm{e20}}{,}{\mathrm{e21}}{,}{\mathrm{e22}}{,}{\mathrm{e23}}{,}{\mathrm{e24}}{,}{\mathrm{e25}}{,}{\mathrm{e26}}{,}{\mathrm{e27}}{,}{\mathrm{e28}}{,}{\mathrm{e29}}{,}{\mathrm{e3}}{,}{\mathrm{e30}}{,}{\mathrm{e31}}{,}{\mathrm{e32}}{,}{\mathrm{e33}}{,}{\mathrm{e34}}{,}{\mathrm{e35}}{,}{\mathrm{e36}}{,}{\mathrm{e37}}{,}{\mathrm{e38}}{,}{\mathrm{e39}}{,}{\mathrm{e4}}{,}{\mathrm{e40}}{,}{\mathrm{e41}}{,}{\mathrm{e42}}{,}{\mathrm{e43}}{,}{\mathrm{e44}}{,}{\mathrm{e45}}{,}{\mathrm{e5}}{,}{\mathrm{e6}}{,}{\mathrm{e7}}{,}{\mathrm{e8}}{,}{\mathrm{e9}}\right\}$ (1)
 > $\mathrm{ends}\left(G\right)$
 $\left\{\left\{{1}{,}{2}\right\}{,}\left\{{1}{,}{3}\right\}{,}\left\{{1}{,}{4}\right\}{,}\left\{{1}{,}{5}\right\}{,}\left\{{1}{,}{6}\right\}{,}\left\{{1}{,}{7}\right\}{,}\left\{{1}{,}{8}\right\}{,}\left\{{1}{,}{9}\right\}{,}\left\{{1}{,}{10}\right\}{,}\left\{{2}{,}{3}\right\}{,}\left\{{2}{,}{4}\right\}{,}\left\{{2}{,}{5}\right\}{,}\left\{{2}{,}{6}\right\}{,}\left\{{2}{,}{7}\right\}{,}\left\{{2}{,}{8}\right\}{,}\left\{{2}{,}{9}\right\}{,}\left\{{2}{,}{10}\right\}{,}\left\{{3}{,}{4}\right\}{,}\left\{{3}{,}{5}\right\}{,}\left\{{3}{,}{6}\right\}{,}\left\{{3}{,}{7}\right\}{,}\left\{{3}{,}{8}\right\}{,}\left\{{3}{,}{9}\right\}{,}\left\{{3}{,}{10}\right\}{,}\left\{{4}{,}{5}\right\}{,}\left\{{4}{,}{6}\right\}{,}\left\{{4}{,}{7}\right\}{,}\left\{{4}{,}{8}\right\}{,}\left\{{4}{,}{9}\right\}{,}\left\{{4}{,}{10}\right\}{,}\left\{{5}{,}{6}\right\}{,}\left\{{5}{,}{7}\right\}{,}\left\{{5}{,}{8}\right\}{,}\left\{{5}{,}{9}\right\}{,}\left\{{5}{,}{10}\right\}{,}\left\{{6}{,}{7}\right\}{,}\left\{{6}{,}{8}\right\}{,}\left\{{6}{,}{9}\right\}{,}\left\{{6}{,}{10}\right\}{,}\left\{{7}{,}{8}\right\}{,}\left\{{7}{,}{9}\right\}{,}\left\{{7}{,}{10}\right\}{,}\left\{{8}{,}{9}\right\}{,}\left\{{8}{,}{10}\right\}{,}\left\{{9}{,}{10}\right\}\right\}$ (2)
 > $H≔\mathrm{complete}\left(2,3\right):$
 > $\mathrm{ends}\left(H\right)$
 $\left\{\left\{{1}{,}{3}\right\}{,}\left\{{1}{,}{4}\right\}{,}\left\{{1}{,}{5}\right\}{,}\left\{{2}{,}{3}\right\}{,}\left\{{2}{,}{4}\right\}{,}\left\{{2}{,}{5}\right\}\right\}$ (3)
 > $K≔\mathrm{complete}\left(\left\{\mathrm{ETH},\mathrm{SFU},\mathrm{UofS},\mathrm{UofW}\right\}\right):$
 > $\mathrm{ends}\left(K\right)$
 $\left\{\left\{{\mathrm{ETH}}{,}{\mathrm{SFU}}\right\}{,}\left\{{\mathrm{ETH}}{,}{\mathrm{UofS}}\right\}{,}\left\{{\mathrm{ETH}}{,}{\mathrm{UofW}}\right\}{,}\left\{{\mathrm{SFU}}{,}{\mathrm{UofS}}\right\}{,}\left\{{\mathrm{SFU}}{,}{\mathrm{UofW}}\right\}{,}\left\{{\mathrm{UofS}}{,}{\mathrm{UofW}}\right\}\right\}$ (4)