AreSimilar - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

geometry

  

AreSimilar

  

test if two triangles are similar

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

AreSimilar(T1, T2, cond)

Parameters

T1, T2

-

two triangles

cond

-

(optional) name

Description

• 

Two similar triangles T1 and T2 are triangles whose corresponding angles are congruent and whose corresponding sides are in proportion.

• 

The routine returns true if T1 and T2 are similar; false if they are not; and FAIL if it is unable to reach a conclusion.

• 

In FAIL is returned, and the optional argument is given, the condition that makes T1 and T2 similar is assigned to this argument. It will be either of the form expr=0 or of the form &orexpr_1=0,...,expr_n=0 where expr, expr_i are Maple expressions.

• 

The command with(geometry,AreSimilar) allows the use of the abbreviated form of this command.

Examples

withgeometry:

pointA,0,0,pointB,0,3,pointC,1,0,pointH,0,6,pointF,2,0:

pointG,3,1:

triangleT1,A,B,C:

triangleT2,A,H,F:

triangleT3,A,H,G:

AreSimilarT1,T2

true

(1)

AreSimilarT1,T3

false

(2)

pointH,0,Hy,pointG,Gx,1:

AreSimilarT1,T3,cond

AreSimilar:   "hint: one of the following conditions must be satisfied: {{9/Hy^2-10/(Gx^2+(Hy-1)^2) = 0, 9/Hy^2-1/(Gx^2+1) = 0}, {9/Hy^2-1/(Gx^2+(Hy-1)^2) = 0, 9/Hy^2-10/(Gx^2+1) = 0}, {9/(Gx^2+(Hy-1)^2)-10/Hy^2 = 0, 9/(Gx^2+(Hy-1)^2)-1/(Gx^2+1) = 0}, {9/(Gx^2+(Hy-1)^2)-1/Hy^2 = 0, 9/(Gx^2+(Hy-1)^2)-10/(Gx^2+1) = 0}, {9/(Gx^2+1)-10/Hy^2 = 0, 9/(Gx^2+1)-1/(Gx^2+(Hy-1)^2) = 0}, {9/(Gx^2+1)-1/Hy^2 = 0, 9/(Gx^2+1)-10/(Gx^2+(Hy-1)^2) = 0}}"

FAIL

(3)

cond

&or9Hy210Gx2+Hy12=0,9Hy21Gx2+1=0,9Hy21Gx2+Hy12=0,9Hy210Gx2+1=0,9Gx2+Hy1210Hy2=0,9Gx2+Hy121Gx2+1=0,9Gx2+Hy121Hy2=0,9Gx2+Hy1210Gx2+1=0,9Gx2+110Hy2=0,9Gx2+11Gx2+Hy12=0,9Gx2+11Hy2=0,9Gx2+110Gx2+Hy12=0

(4)

See Also

geometry[triangle]

 


Download Help Document