 electric current - Maple Help

Units of Electric Current Description

 • Electric current is a base dimension in the International System of Units. The SI unit of electric current is the ampere, which is defined as the constant current that, if maintained in two straight parallel conductors of infinite length, negligible circular cross-section, and 1 meter vacuum separation, produces between these conductors a force equal to $2.×{10}^{-7}$ newton per meter of length (9th CGPM, 1948).
 • Maple knows the units of electric current listed in the following table.

 Name Symbols Context Alternate Spellings Prefixes ampere A SI * amperes SI abampere abA EMU * abamperes SI statampere statA ESU * statamperes SI biot standard * biots SI gilbert f standard * gilberts SI planck_current planck * planck_currents

 An asterisk ( * ) indicates the default context, an at sign (@) indicates an abbreviation, and under the prefixes column, SI indicates that the unit takes all SI prefixes, IEC indicates that the unit takes IEC prefixes, and SI+ and SI- indicate that the unit takes only positive and negative SI prefixes, respectively.  Refer to a unit in the Units package by indexing the name or symbol with the context, for example, ampere[SI] or abA[EMU]; or, if the context is indicated as the default, by using only the unit name or symbol, for example, ampere or abA.
 The units of electric current are defined as follows.
 An abampere is defined as $10$ amperes and is energy-equivalent to the unit square root centimeter square root gram per second ($\frac{\sqrt{\mathrm{cm}g}}{s}$).
 A statampere is defined as $\frac{1}{10c}$ ampere where c is the magnitude of the speed of light, and is energy-equivalent to the unit square root cubic centimeter square root gram per second squared ($\frac{{\mathrm{cm}}^{3}{2}}\sqrt{g}}{{s}^{2}}$).
 A biot is another name for an abampere.
 A gilbert is defined as $\frac{1}{\left(4\mathrm{Pi}\right)}$ abampere.
 A planck current is defined as a planck charge per planck time. Examples

 > $\mathrm{convert}\left('\mathrm{ampere}','\mathrm{dimensions}','\mathrm{base}'=\mathrm{true}\right)$
 ${\mathrm{electric_current}}$ (1)
 > $\mathrm{convert}\left(1.40941387×{10}^{-9},'\mathrm{units}','A','\mathrm{abA}'\right)$
 ${1.409413870}{×}{{10}}^{{-10}}$ (2)
 > $\mathrm{convert}\left(1.40941387×{10}^{-9},'\mathrm{units}','A',\frac{\mathrm{sqrt}\left('\mathrm{cm}''g'\right)}{'s'},'\mathrm{energy}'\right)$
 ${1.409413870}{×}{{10}}^{{-10}}$ (3)
 > $\mathrm{convert}\left(1.40941387×{10}^{-9},'\mathrm{units}','A','\mathrm{statA}'\right)$
 ${4.225316484}$ (4)
 > $\mathrm{convert}\left(1.40941387×{10}^{-9},'\mathrm{units}','A',\frac{{'\mathrm{cm}'}^{\frac{3}{2}}{'g'}^{\frac{1}{2}}}{{'s'}^{2}},'\mathrm{energy}'\right)$
 ${4.225316484}$ (5)
 > $\mathrm{convert}\left(1.40941387×{10}^{-9},'\mathrm{units}','A','\mathrm{gilbert}'\right)$
 ${1.771121704}{×}{{10}}^{{-9}}$ (6)