ConvergenceRadius - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

SumTools[DefiniteSum]

  

Converges

  

check if an infinite series converges unconditionally

  

ConvergenceRadius

  

radius of convergence of an infinite series

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

Converges(f, k, m, n)

Converges(s)

ConvergenceRadius(f, k, m, n, x)

ConvergenceRadius(s, x)

Parameters

f

-

expression; the summand

k

-

name; the summation index

m, n

-

expressions or integers; the summation bounds

s

-

inert or unevaluated definite sum; s=k=mnf

x

-

name; the series variable

Description

• 

The Converges(f, k, m, n) and Converges(s) commands check if the series s converges unconditionally, and return true if it does, false if it diverges unconditionally, and FAIL otherwise. Typically, n=, but alternatively m= is also possible.

• 

The return value of FAIL can indicate either that s neither converges unconditionally nor diverges unconditionally, i.e., the convergence behavior depends on the value of a parameter, or that the command was unable to determine the convergence behavior for some other reason. In the first case, the ConvergenceRadius can be used to find a condition for convergence.

• 

The ConvergenceRadius(f, k, m, n, x) and ConvergenceRadius(s, x) commands determine the radius of convergence r of the series s w.r.t. x. The result is returned in the form &verbar;x&verbar;<r, where r0&plus;.  r has the additional property that s diverges when &verbar;x&verbar;&gt;r.

• 

If s is not a Taylor, Laurent or Puiseux series, or if the expansion point of s is not 0, then ConvergenceRadius may return a more general inequality of the form &verbar;&verbar;<r, where r is not necessarily the convergence radius.

• 

If s converges unconditionally, then ConvergenceRadius returns &verbar;x&verbar;<, and if s diverges unconditionally, the result is x<0.

• 

All calling sequences may return FAIL if the convergence condition cannot be determined, or if m&equals; and n&equals;.

• 

If both m and n are finite, then Converges returns true, and ConvergenceRadius returns &verbar;x&verbar;<.

Examples

withSumTools:-DefiniteSum

ConvergenceRadius&comma;Converges&comma;CreativeTelescoping&comma;Definite&comma;SummableSpace&comma;Telescoping&comma;pFqToStandardFunctions

(1)

Converges1n&comma;n&comma;1&comma;

false

(2)

s0Sum1n&comma;n=1..

s0n=11n

(3)

Convergess0

false

(4)

s1Sum1n2&comma;n=1..

s1n=11n2

(5)

Convergess1

true

(6)

The convergence behavior of the following oscillating series cannot be determined.

s2Sum1nn&comma;n=1..

s2n=1−1nn

(7)

Convergess2

FAIL

(8)

s3Sum2n&comma;n=1..

s3n=12n

(9)

Convergess3

true

(10)

The power series of &ExponentialE;x converges unconditionally for all x.

s4convertexpx&comma;FormalPowerSeries

s4n=0xnn!

(11)

Convergess4

true

(12)

The convergence behavior of the following series depends on the value of x.

s5Sumxnn&comma;n=1..

s5n=1xnn

(13)

Convergess5

FAIL

(14)

ConvergenceRadiuss5&comma;x

x<1

(15)

ConvergenceRadiusxnn&comma;n&comma;1&comma;&comma;x

x<1

(16)

The following series does not depend on x and diverges unconditionally.

s6Sumbinomial2n&comma;n&comma;n=0..

s6n=02nn

(17)

ConvergenceRadiuss6&comma;x

x<0

(18)

s7Sumbinomial2n&comma;nxn&comma;n=0..

s7n=02nnxn

(19)

ConvergenceRadiuss7&comma;x

x<14

(20)

If the expansion point is not the origin, a more general inequality may be returned.

s8Sumx1n2n&comma;n=0..

s8n=0x1n2n

(21)

ConvergenceRadiuss8&comma;x

x1<2

(22)

s9Sumx22n&comma;n=0..

s9n=0x22n

(23)

ConvergenceRadiuss9&comma;x

x22<1

(24)

Compatibility

• 

The SumTools[DefiniteSum][Converges] and SumTools[DefiniteSum][ConvergenceRadius] commands were introduced in Maple 2025.

• 

For more information on Maple 2025 changes, see Updates in Maple 2025.

See Also

series

sum

SumTools

 


Download Help Document