SumTools[DefiniteSum]
Converges
check if an infinite series converges unconditionally
ConvergenceRadius
radius of convergence of an infinite series
Calling Sequence
Parameters
Description
Examples
Compatibility
Converges(f, k, m, n)
Converges(s)
ConvergenceRadius(f, k, m, n, x)
ConvergenceRadius(s, x)
f
-
expression; the summand
k
name; the summation index
m, n
expressions or integers; the summation bounds
s
inert or unevaluated definite sum; s=∑k=mn⁡f
x
name; the series variable
The Converges(f, k, m, n) and Converges(s) commands check if the series s converges unconditionally, and return true if it does, false if it diverges unconditionally, and FAIL otherwise. Typically, n=∞, but alternatively m=−∞ is also possible.
The return value of FAIL can indicate either that s neither converges unconditionally nor diverges unconditionally, i.e., the convergence behavior depends on the value of a parameter, or that the command was unable to determine the convergence behavior for some other reason. In the first case, the ConvergenceRadius can be used to find a condition for convergence.
The ConvergenceRadius(f, k, m, n, x) and ConvergenceRadius(s, x) commands determine the radius of convergence r of the series s w.r.t. x. The result is returned in the form |x|<r, where r∈ℝ0+∪∞. r has the additional property that s diverges when |x|>r.
If s is not a Taylor, Laurent or Puiseux series, or if the expansion point of s is not 0, then ConvergenceRadius may return a more general inequality of the form |⋯|<r, where r is not necessarily the convergence radius.
If s converges unconditionally, then ConvergenceRadius returns |x|<∞, and if s diverges unconditionally, the result is x<0.
All calling sequences may return FAIL if the convergence condition cannot be determined, or if m=−∞ and n=∞.
If both m and n are finite, then Converges returns true, and ConvergenceRadius returns |x|<∞.
with⁡SumTools:-DefiniteSum
ConvergenceRadius,Converges,CreativeTelescoping,Definite,SummableSpace,Telescoping,pFqToStandardFunctions
Converges⁡1n,n,1,∞
false
s0≔Sum⁡1n,n=1..∞
s0≔∑n=1∞⁡1n
Converges⁡s0
s1≔Sum⁡1n2,n=1..∞
s1≔∑n=1∞⁡1n2
Converges⁡s1
true
The convergence behavior of the following oscillating series cannot be determined.
s2≔Sum⁡−1nn,n=1..∞
s2≔∑n=1∞⁡−1nn
Converges⁡s2
FAIL
s3≔Sum⁡2−n,n=1..∞
s3≔∑n=1∞⁡2−n
Converges⁡s3
The power series of ⅇx converges unconditionally for all x∈ℂ.
s4≔convert⁡exp⁡x,FormalPowerSeries
s4≔∑n=0∞⁡xnn!
Converges⁡s4
The convergence behavior of the following series depends on the value of x.
s5≔Sum⁡xnn,n=1..∞
s5≔∑n=1∞⁡xnn
Converges⁡s5
ConvergenceRadius⁡s5,x
x<1
ConvergenceRadius⁡xnn,n,1,∞,x
The following series does not depend on x and diverges unconditionally.
s6≔Sum⁡binomial⁡2⁢n,n,n=0..∞
s6≔∑n=0∞⁡2⁢nn
ConvergenceRadius⁡s6,x
x<0
s7≔Sum⁡binomial⁡2⁢n,n⁢xn,n=0..∞
s7≔∑n=0∞⁡2⁢nn⁢xn
ConvergenceRadius⁡s7,x
x<14
If the expansion point is not the origin, a more general inequality may be returned.
s8≔Sum⁡x−1n⁢2−n,n=0..∞
s8≔∑n=0∞⁡x−1n⁢2−n
ConvergenceRadius⁡s8,x
x−1<2
s9≔Sum⁡x2−2n,n=0..∞
s9≔∑n=0∞⁡x2−2n
ConvergenceRadius⁡s9,x
x2−2<1
The SumTools[DefiniteSum][Converges] and SumTools[DefiniteSum][ConvergenceRadius] commands were introduced in Maple 2025.
For more information on Maple 2025 changes, see Updates in Maple 2025.
See Also
series
sum
SumTools
Download Help Document