 EnergyMomentum - Maple Help

Physics[EnergyMomentum] - The EnergyMomentum tensor Calling Sequence EnergyMomentum[$\mathrm{\mu },\mathrm{\nu }$] EnergyMomentum[keyword] Parameters

 mu, nu - the indices, as names representing integer numbers between 0 and the spacetime dimension, they can also be the numbers themselves keyword - optional, it can be definition, array or matrix, nonzero Description

 • The EnergyMomentum[mu, nu], displayed as $\mathrm{T__μ,ν}$, is a computational representation for the EnergyMomentum tensor. The components of this tensor are initially set equal to zero. To define these components in any particular way use the Define command passing to it an equation with EnergyMomentum[mu, nu] on the left-hand side and the desired definition, as a symmetric tensorial expression or a symmetric matrix on the right-hand side.
 • When the metric is set to represent any curved spacetime, the EnergyMomentum tensor is the source of the gravitational field, entering Einstein's equations

${G}_{\mathrm{\mu },\mathrm{\nu }}=8\mathrm{\pi }{\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$

 where $\mathrm{G__μ,ν}$ is the Einstein tensor, expressed in terms of the Ricci tensor $\mathrm{R__μ,ν}$ as

${G}_{\mathrm{\mu },\mathrm{\nu }}={R}_{\mathrm{\mu },\mathrm{\nu }}-\frac{1}{2}{g}_{\mathrm{\mu },\mathrm{\nu }}{R}_{\mathrm{\alpha }}^{\mathrm{\alpha }}$

 • The EnergyMomentum tensor also satisfies ${▿}_{\mathrm{\mu }}\left({\mathrm{Τ}}_{}^{\mathrm{\mu },\mathrm{\nu }}\right)=0$, where ${▿}_{\mathrm{\mu }}$ is the covariant derivative operator D_, and this 4D divergence is entered as D_[mu](EnergyMomentum[mu,nu]).
 • When the indices of EnergyMomentum assume integer values they are expected to be between 0 and the spacetime dimension, prefixed by ~ when they are contravariant, and the corresponding value of EnergyMomentum is returned. The values 0 and 4, or for the case any dimension set for the spacetime, represent the same object. When the indices have symbolic values EnergyMomentum returns unevaluated after normalizing its indices taking into account their symmetry property.
 • Computations performed with the Physics package commands take into account EnergyMomentum's sum rule for repeated indices - see . and Simplify. The distinction between covariant and contravariant indices in the input of tensors is done by prefixing contravariant ones with ~, say as in ~mu; in the output, contravariant indices are displayed as superscripts. For contracted indices, you can enter them one covariant and one contravariant. Note however that - provided that the spacetime metric is galilean (Euclidean or Minkowski), or the object is a tensor also in curvilinear coordinates - this distinction in the input is not relevant, and so contracted indices can be entered as both covariant or both contravariant, in which case they will be automatically rewritten as one covariant and one contravariant. Tensors can have spacetime and space indices at the same time. To change the type of letter used to represent spacetime or space indices see Setup.
 • Besides being indexed with two indices, EnergyMomentum accepts three keywords:
 – definition: returns the definition of the EnergyMomentum tensor in terms of the Ricci tensor.
 – matrix: (synonyms: Matrix, array, Array, or no indices whatsoever, as in EnergyMomentum[]) returns a Matrix that when indexed with numerical values from 1 to the dimension of spacetime returns the value of each of the components of EnergyMomentum. If this keyword is passed together with indices, that can be covariant or contravariant, the resulting matrix takes into account the character of the indices.
 – nonzero: returns a set of equations, with the left-hand-side as a sequence of two positive numbers identifying the element of $\mathrm{G__μ,ν}$ and the corresponding value on the right-hand-side. Note that this set is actually the output of the ArrayElems command when passing to it the Array obtained with the keyword array.
 • Some automatic checking and normalization are carried out each time you enter EnergyMomentum[...]. The checking is concerned with possible syntax errors. The automatic normalization takes into account the symmetry of EnergyMomentum[mu,nu] with respect to interchanging the positions of the indices mu and nu.
 • The %EnergyMomentum command is the inert form of EnergyMomentum, so it represents the same mathematical operation but without performing it. To perform the operation, use value. Examples

 > $\mathrm{with}\left(\mathrm{Physics}\right):$
 > $\mathrm{Setup}\left(\mathrm{mathematicalnotation}=\mathrm{true}\right)$
 $\left[{\mathrm{mathematicalnotation}}{=}{\mathrm{true}}\right]$ (1)
 > ${\mathrm{EnergyMomentum}}_{\mathrm{μ},\mathrm{ν}}$
 ${{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}$ (2)

When Physics is loaded, all the components of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$ are set equal to 0

 > ${\mathrm{EnergyMomentum}}_{\mathrm{definition}}$
 ${{\mathrm{EnergyMomentum}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{rrrr}0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\\ 0& 0& 0& 0\end{array}\right]\right)$ (3)

In order to set these components in any particular way use the Define command passing to it an equation with EnergyMomentum[mu, nu] on the left-hand side and the desired definition, as a symmetric tensorial expression or a symmetric matrix, on the right-hand side. For example, the general form of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$ in terms of the energy density $W$, the flux density ${S}_{j}$ and the stress tensor ${\mathrm{\sigma }}_{j,k}$ of a system can be entered as

 > $\mathrm{Setup}\left(\mathrm{spaceindices}=\mathrm{lowercaselatin_is}\right)$
 $\left[{\mathrm{spaceindices}}{=}{\mathrm{lowercaselatin_is}}\right]$ (4)
 > $\mathrm{Define}\left({S}_{j},{\mathrm{σ}}_{j,k},\mathrm{symmetric}\right)$
 $\mathrm{Defined objects with tensor properties}$
 $\left\{{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{S}}_{{j}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\gamma }}}_{{i}{,}{j}}{,}{{\mathrm{σ}}}_{{j}{,}{k}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right\}$ (5)
 > ${\mathrm{EnergyMomentum}}_{\mathrm{μ},\mathrm{ν}}=\mathrm{Matrix}\left(4,\left(\mathrm{μ},\mathrm{ν}\right)→\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{μ}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}W\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{ν}}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{elif}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{μ}}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{σ}}_{\mathrm{μ},\mathrm{ν}}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\right)$
 ${{\mathrm{EnergyMomentum}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{\mathrm{σ}}_{1,1}& {\mathrm{σ}}_{1,2}& {\mathrm{σ}}_{1,3}& {S}_{1}\\ {\mathrm{σ}}_{2,1}& {\mathrm{σ}}_{2,2}& {\mathrm{σ}}_{2,3}& {S}_{2}\\ {\mathrm{σ}}_{3,1}& {\mathrm{σ}}_{3,2}& {\mathrm{σ}}_{3,3}& {S}_{3}\\ {S}_{1}& {S}_{2}& {S}_{3}& W\end{array}\right]\right)$ (6)

You can now set these to be the components of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$

 > $\mathrm{Define}\left(\right)$
 $\mathrm{Defined objects with tensor properties}$
 $\left\{{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{S}}_{{j}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\gamma }}}_{{i}{,}{j}}{,}{{\mathrm{σ}}}_{{j}{,}{k}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}\right\}$ (7)

After this definition, you can query about the definition, the nonzero components, any particular covariant or contravariant component via

 > ${\mathrm{EnergyMomentum}}_{\mathrm{definition}}$
 ${{\mathrm{EnergyMomentum}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{\mathrm{σ}}_{1,1}& {\mathrm{σ}}_{1,2}& {\mathrm{σ}}_{1,3}& {S}_{1}\\ {\mathrm{σ}}_{2,1}& {\mathrm{σ}}_{2,2}& {\mathrm{σ}}_{2,3}& {S}_{2}\\ {\mathrm{σ}}_{3,1}& {\mathrm{σ}}_{3,2}& {\mathrm{σ}}_{3,3}& {S}_{3}\\ {S}_{1}& {S}_{2}& {S}_{3}& W\end{array}\right]\right)$ (8)
 > ${\mathrm{EnergyMomentum}}_{1,2}$
 ${{\mathrm{σ}}}_{{1}{,}{2}}$ (9)

In the definition above, all the components of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$ are constant. To set part or all of them as depending on the coordinates, for instance in a generic coordinate system and using spherical coordinates,

 > $\mathrm{Setup}\left(\mathrm{coordinates}=\mathrm{spherical}\right)$
 ${}\mathrm{Systems of spacetime coordinates are:}{}\left\{X=\left(r{,}\mathrm{\theta }{,}\mathrm{\phi }{,}t\right)\right\}$
 $\mathrm{_______________________________________________________}$
 $\left[{\mathrm{coordinatesystems}}{=}\left\{{X}\right\}\right]$ (10)

you can indicate the functionality in the definition. For example, set $W$ to be constant (i.e. no functionality) but the flux density ${S}_{j}$ and stress ${\mathrm{sigma}}_{j,k}$ tensors depending on $X$

 > ${\mathrm{EnergyMomentum}}_{\mathrm{μ},\mathrm{ν}}=\mathrm{Matrix}\left(4,\left(\mathrm{μ},\mathrm{ν}\right)→\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{μ}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}W\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{ν}}\left(X\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{elif}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{μ}}\left(X\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{σ}}_{\mathrm{μ},\mathrm{ν}}\left(X\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\right)$
 ${{\mathrm{EnergyMomentum}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}{\mathrm{σ}}_{1,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\\ {\mathrm{σ}}_{2,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{2,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\\ {\mathrm{σ}}_{3,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{3,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {\mathrm{σ}}_{3,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\\ {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)& W\end{array}\right]\right)$ (11)
 > $\mathrm{CompactDisplay}\left(\right)$
 ${S}{}\left({r}{,}{\mathrm{\theta }}{,}{\mathrm{\phi }}{,}{t}\right){}{\mathrm{will now be displayed as}}{}{S}$
 ${\mathrm{σ}}{}\left({r}{,}{\mathrm{\theta }}{,}{\mathrm{\phi }}{,}{t}\right){}{\mathrm{will now be displayed as}}{}{\mathrm{σ}}$ (12)

Define now ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$ with these components

 > $\mathrm{Define}\left(\right)$
 $\mathrm{Defined objects with tensor properties}$
 $\left\{{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{S}}_{{j}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\gamma }}}_{{i}{,}{j}}{,}{{\mathrm{σ}}}_{{j}{,}{k}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{X}}_{{\mathrm{\mu }}}\right\}$ (13)

To see the continuity equations for the components of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$, use for instance the inert version of the covariant derivative operator D_ and the TensorArray command

 > $\left({\mathrm{%D_}}_{\mathrm{μ}}={\mathrm{D_}}_{\mathrm{μ}}\right)\left({\mathrm{EnergyMomentum}}_{\mathrm{μ},\mathrm{ν}}\right)$
 ${{\mathrm{%D_}}}_{{\mathrm{μ}}}{}\left({{\mathrm{EnergyMomentum}}}_{{\mathrm{~mu}}{,}{\mathrm{ν}}}\right){=}{0}$ (14)
 > ${\mathrm{Vector}}_{\mathrm{column}}\left(\mathrm{TensorArray}\left(\right)\right)$
 $\left[\begin{array}{c}{\mathrm{%d_}}_{1}{}\left(-{\mathrm{σ}}_{1,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{2}{}\left(-{\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{3}{}\left(-{\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{4}{}\left({S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)=0\\ {\mathrm{%d_}}_{1}{}\left(-{\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{2}{}\left(-{\mathrm{σ}}_{2,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{3}{}\left(-{\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{4}{}\left({S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)=0\\ {\mathrm{%d_}}_{1}{}\left(-{\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{2}{}\left(-{\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{3}{}\left(-{\mathrm{σ}}_{3,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{4}{}\left({S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)=0\\ {\mathrm{%d_}}_{1}{}\left(-{S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{2}{}\left(-{S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{3}{}\left(-{S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right),\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)+{\mathrm{%d_}}_{4}{}\left(W,\left[r,\mathrm{θ},\mathrm{φ},t\right]\right)=0\end{array}\right]$ (15)
 > $\mathrm{value}\left(\right)$
 $\left[\begin{array}{c}-\left(\frac{\partial }{\partial r}{}{\mathrm{σ}}_{1,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{θ}}{}{\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{φ}}{}{\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)+\frac{\partial }{\partial t}{}{S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ -\left(\frac{\partial }{\partial r}{}{\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{θ}}{}{\mathrm{σ}}_{2,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{φ}}{}{\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)+\frac{\partial }{\partial t}{}{S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ -\left(\frac{\partial }{\partial r}{}{\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{θ}}{}{\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{φ}}{}{\mathrm{σ}}_{3,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)+\frac{\partial }{\partial t}{}{S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ -\left(\frac{\partial }{\partial r}{}{S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{θ}}{}{S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)-\left(\frac{\partial }{\partial \mathrm{φ}}{}{S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)\right)=0\end{array}\right]$ (16)

In curved spaces, EnergyMomentum enters Einstein's equations as the source of the gravitational field

 > ${\mathrm{g_}}_{\mathrm{sc}}$
 ${}\mathrm{_______________________________________________________}$
 ${}\mathrm{The Schwarzschild metric in coordinates}{}\left[r{,}\mathrm{\theta }{,}\mathrm{\phi }{,}t\right]$
 $\mathrm{Parameters:}\left[m\right]$
 $\mathrm{Signature:}\left(\mathrm{- - - +}\right)$
 ${}\mathrm{_______________________________________________________}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}\frac{r}{2{}m-r}& 0& 0& 0\\ 0& -{r}^{2}& 0& 0\\ 0& 0& -{r}^{2}{}{\mathrm{sin}{}\left(\mathrm{θ}\right)}^{2}& 0\\ 0& 0& 0& \frac{r-2{}m}{r}\end{array}\right]\right)$ (17)
 > ${\mathrm{EnergyMomentum}}_{\mathrm{definition}}$
 ${{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{=}\frac{{{G}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{8}{}{\mathrm{\pi }}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{=}\left[\begin{array}{cccc}{{\mathrm{σ}}}_{{1}{,}{1}}{}\left({X}\right)& {{\mathrm{σ}}}_{{1}{,}{2}}{}\left({X}\right)& {{\mathrm{σ}}}_{{1}{,}{3}}{}\left({X}\right)& {{S}}_{{1}}{}\left({X}\right)\\ {{\mathrm{σ}}}_{{2}{,}{1}}{}\left({X}\right)& {{\mathrm{σ}}}_{{2}{,}{2}}{}\left({X}\right)& {{\mathrm{σ}}}_{{2}{,}{3}}{}\left({X}\right)& {{S}}_{{2}}{}\left({X}\right)\\ {{\mathrm{σ}}}_{{3}{,}{1}}{}\left({X}\right)& {{\mathrm{σ}}}_{{3}{,}{2}}{}\left({X}\right)& {{\mathrm{σ}}}_{{3}{,}{3}}{}\left({X}\right)& {{S}}_{{3}}{}\left({X}\right)\\ {{S}}_{{1}}{}\left({X}\right)& {{S}}_{{2}}{}\left({X}\right)& {{S}}_{{3}}{}\left({X}\right)& {W}\end{array}\right]$ (18)

Take the first of these two equations and compute a tensor array for it

 > ${1}_{}$
 ${{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{=}\frac{{{G}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{8}{}{\mathrm{\pi }}}$ (19)
 > $\mathrm{TensorArray}\left({1}_{}\right)$
 $\left[\begin{array}{cccc}{\mathrm{σ}}_{1,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{2,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{3,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& W=0\end{array}\right]$ (20)

This is the expected result for the Schwarzschild metric: in vacuum, the components of the Einstein tensor, and with them those of ${\mathrm{Τ}}_{\mathrm{\mu },\mathrm{\nu }}$ are all equal to zero.

Consider now the Tolman metric also in spherical coordinates and the resulting equations for the flux and the stress tensors ${S}_{j}$ and ${\mathrm{sigma}}_{j,k}$

 > ${\mathrm{g_}}_{\mathrm{tol}}$
 ${}\mathrm{_______________________________________________________}$
 ${}\mathrm{The Tolman metric in coordinates}{}\left[r{,}\mathrm{\theta }{,}\mathrm{\phi }{,}t\right]$
 $\mathrm{Parameters:}\left[R{}\left(t{,}r\right){,}E{}\left(r\right)\right]$
 $\mathrm{Signature:}\left(\mathrm{- - - +}\right)$
 ${}\mathrm{_______________________________________________________}$
 ${{\mathrm{g_}}}_{{\mathrm{μ}}{,}{\mathrm{ν}}}{=}\left(\left[\begin{array}{cccc}-\frac{{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)}^{2}}{1+2{}E{}\left(r\right)}& 0& 0& 0\\ 0& -{R{}\left(t,r\right)}^{2}& 0& 0\\ 0& 0& -{R{}\left(t,r\right)}^{2}{}{\mathrm{sin}{}\left(\mathrm{θ}\right)}^{2}& 0\\ 0& 0& 0& 1\end{array}\right]\right)$ (21)
 > $\mathrm{CompactDisplay}\left(\right)$
 ${E}{}\left({r}\right){}{\mathrm{will now be displayed as}}{}{E}$
 ${R}{}\left({t}{,}{r}\right){}{\mathrm{will now be displayed as}}{}{R}$ (22)
 > $\mathrm{TensorArray}\left({1}_{}\right)$
 $\left[\begin{array}{cccc}{\mathrm{σ}}_{1,1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=-\frac{1}{8}{}\frac{{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)}^{2}{}\left(2{}R{}\left(t,r\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right)+{\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)}^{2}-2{}E{}\left(r\right)\right)}{{R{}\left(t,r\right)}^{2}{}\left(1+2{}E{}\left(r\right)\right){}\mathrm{π}}& {\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {\mathrm{σ}}_{1,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{2,2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=-\frac{1}{8}{}\frac{R{}\left(t,r\right){}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}& {\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {\mathrm{σ}}_{1,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{2,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {\mathrm{σ}}_{3,3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=-\frac{1}{8}{}\frac{R{}\left(t,r\right){}{\mathrm{sin}{}\left(\mathrm{θ}\right)}^{2}{}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0\\ {S}_{1}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{2}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& {S}_{3}{}\left(r,\mathrm{θ},\mathrm{φ},t\right)=0& W=\frac{1}{8}{}\frac{{\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)}^{2}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+2{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right){}R{}\left(t,r\right)-2{}\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right){}R{}\left(t,r\right)-2{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}E{}\left(r\right)}{{R{}\left(t,r\right)}^{2}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}\end{array}\right]$ (23)

To use the right-hand sides as definitions for the stress and flux tensors, take for instance the space components of the definition of the EnergyMomentum tensor

 > $\frac{{\mathrm{Einstein}}_{i,j}}{8\mathrm{Pi}}$
 $\frac{{{G}}_{{i}{,}{j}}}{{8}{}{\mathrm{\pi }}}$ (24)

Construct a defining equation for ${\mathrm{sigma}}_{j,k}$

 > ${\mathrm{σ}}_{j,k}=\mathrm{TensorArray}\left(\right)$
 ${{\mathrm{σ}}}_{{j}{,}{k}}{=}\left(\left[\begin{array}{ccc}-\frac{1}{8}{}\frac{{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)}^{2}{}\left(2{}R{}\left(t,r\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right)+{\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)}^{2}-2{}E{}\left(r\right)\right)}{{R{}\left(t,r\right)}^{2}{}\left(1+2{}E{}\left(r\right)\right){}\mathrm{π}}& 0& 0\\ 0& -\frac{1}{8}{}\frac{R{}\left(t,r\right){}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}& 0\\ 0& 0& -\frac{1}{8}{}\frac{R{}\left(t,r\right){}{\mathrm{sin}{}\left(\mathrm{θ}\right)}^{2}{}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}\end{array}\right]\right)$ (25)
 > $\mathrm{Define}\left(\right)$
 $\mathrm{Defined objects with tensor properties}$
 $\left\{{{▿}}_{{\mathrm{\mu }}}{,}{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{R}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{R}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}{,}{\mathrm{\beta }}}{,}{{S}}_{{j}}{,}{{C}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}{,}{\mathrm{\beta }}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\gamma }}}_{{i}{,}{j}}{,}{{\mathrm{σ}}}_{{j}{,}{k}}{,}{{\mathrm{\Gamma }}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}}{,}{{G}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{X}}_{{\mathrm{\mu }}}\right\}$ (26)

The definition and contravariant components of ${\mathrm{sigma}}_{j,k}$

 > ${\mathrm{σ}}_{\mathrm{definition}}$
 ${{\mathrm{σ}}}_{{j}{,}{k}}{=}\left(\left[\begin{array}{ccc}-\frac{1}{8}{}\frac{{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)}^{2}{}\left(2{}R{}\left(t,r\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right)+{\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)}^{2}-2{}E{}\left(r\right)\right)}{{R{}\left(t,r\right)}^{2}{}\left(1+2{}E{}\left(r\right)\right){}\mathrm{π}}& 0& 0\\ 0& -\frac{1}{8}{}\frac{R{}\left(t,r\right){}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}& 0\\ 0& 0& -\frac{1}{8}{}\frac{R{}\left(t,r\right){}{\mathrm{sin}{}\left(\mathrm{θ}\right)}^{2}{}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}\end{array}\right]\right)$ (27)
 > ${\mathrm{σ}}_{\mathrm{~}}$
 ${{\mathrm{σ}}}_{{\mathrm{~i}}{,}{\mathrm{~j}}}{=}\left(\left[\begin{array}{ccc}-\frac{1}{8}{}\frac{\left(2{}R{}\left(t,r\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right)+{\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)}^{2}-2{}E{}\left(r\right)\right){}\left(1+2{}E{}\left(r\right)\right)}{{R{}\left(t,r\right)}^{2}{}\mathrm{π}{}{\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)}^{2}}& 0& 0\\ 0& \frac{1}{8}{}\frac{-\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)-\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)-\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)+\frac{ⅆ}{ⅆr}{}E{}\left(r\right)}{{R{}\left(t,r\right)}^{3}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}& 0\\ 0& 0& -\frac{1}{8}{}\frac{{\mathrm{csc}{}\left(\mathrm{θ}\right)}^{2}{}\left(\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)\right){}R{}\left(t,r\right)+\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right)\right){}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)+\left(\frac{\partial }{\partial t}{}R{}\left(t,r\right)\right){}\left(\frac{\partial }{\partial t}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right)\right)-\left(\frac{ⅆ}{ⅆr}{}E{}\left(r\right)\right)\right)}{{R{}\left(t,r\right)}^{3}{}\left(\frac{\partial }{\partial r}{}R{}\left(t,r\right)\right){}\mathrm{π}}\end{array}\right]\right)$ (28)

This definition of ${\mathrm{sigma}}_{j,k}$ is now also part of the definition of the EnergyMomentum. Note however that in the definition (11) we used ${\mathrm{sigma}}_{j,k}\left(X\right)$, so to avoid having ${\mathrm{sigma}}_{j,k}\left(r,t\right)\left(X\right)$ redo that definition using just ${\mathrm{sigma}}_{j,k}$:

 > $\mathrm{Define}\left({\mathrm{EnergyMomentum}}_{\mathrm{μ},\mathrm{ν}}=\mathrm{Matrix}\left(4,\left(\mathrm{μ},\mathrm{ν}\right)→\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{μ}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}W\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{ν}}\left(X\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{elif}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathrm{ν}=4\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{then}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{S}_{\mathrm{μ}}\left(X\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{else}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{σ}}_{\mathrm{μ},\mathrm{ν}}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}\mathbf{end if}\right)\right)$
 $\mathrm{Defined objects with tensor properties}$
 $\left\{{{▿}}_{{\mathrm{\mu }}}{,}{{\mathrm{\gamma }}}_{{\mathrm{\mu }}}{,}{{\mathrm{\sigma }}}_{{\mathrm{\mu }}}{,}{{R}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{R}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}{,}{\mathrm{\beta }}}{,}{{S}}_{{j}}{,}{{C}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}{,}{\mathrm{\beta }}}{,}{{\partial }}_{{\mathrm{\mu }}}{,}{{g}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\gamma }}}_{{i}{,}{j}}{,}{{\mathrm{σ}}}_{{j}{,}{k}}{,}{{\mathrm{\Gamma }}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}{,}{\mathrm{\alpha }}}{,}{{G}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{\mathrm{\epsilon }}}_{{\mathrm{\alpha }}{,}{\mathrm{\beta }}{,}{\mathrm{\mu }}{,}{\mathrm{\nu }}}{,}{{X}}_{{\mathrm{\mu }}}\right\}$ (29)
 > ${\mathrm{EnergyMomentum}}_{\mathrm{definition}}$
 ${{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{=}\frac{{{G}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}}{{8}{}{\mathrm{\pi }}}{,}{{\mathrm{Τ}}}_{{\mathrm{\mu }}{,}{\mathrm{\nu }}}{=}\left[\begin{array}{cccc}{-}\frac{{1}}{{8}}{}\frac{{\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right)\right)}^{{2}}{}\left({2}{}{R}{}\left({t}{,}{r}\right){}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right){,}{t}\right)\right){+}{\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right)\right)}^{{2}}{-}{2}{}{E}{}\left({r}\right)\right)}{{{R}{}\left({t}{,}{r}\right)}^{{2}}{}\left({1}{+}{2}{}{E}{}\left({r}\right)\right){}{\mathrm{π}}}& {0}& {0}& {{S}}_{{1}}{}\left({X}\right)\\ {0}& {-}\frac{{1}}{{8}}{}\frac{{R}{}\left({t}{,}{r}\right){}\left(\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right){,}{t}\right){,}{t}\right)\right){}{R}{}\left({t}{,}{r}\right){+}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right){,}{t}\right)\right){}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right)\right){+}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right)\right){}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right){,}{t}\right)\right){-}\left({\mathrm{diff}}{}\left({E}{}\left({r}\right){,}{r}\right)\right)\right)}{\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right)\right){}{\mathrm{π}}}& {0}& {{S}}_{{2}}{}\left({X}\right)\\ {0}& {0}& {-}\frac{{1}}{{8}}{}\frac{{R}{}\left({t}{,}{r}\right){}{{\mathrm{sin}}{}\left({\mathrm{θ}}\right)}^{{2}}{}\left(\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right){,}{t}\right){,}{t}\right)\right){}{R}{}\left({t}{,}{r}\right){+}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right){,}{t}\right)\right){}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right)\right){+}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{t}\right)\right){}\left({\mathrm{diff}}{}\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right){,}{t}\right)\right){-}\left({\mathrm{diff}}{}\left({E}{}\left({r}\right){,}{r}\right)\right)\right)}{\left({\mathrm{diff}}{}\left({R}{}\left({t}{,}{r}\right){,}{r}\right)\right){}{\mathrm{π}}}& {{S}}_{{3}}{}\left({X}\right)\\ {{S}}_{{1}}{}\left({X}\right)& {{S}}_{{2}}{}\left({X}\right)& {{S}}_{{3}}{}\left({X}\right)& {W}\end{array}\right]$ (30)

In the same way you can define the components of ${S}_{j}$ and remove the dependency in ${S}_{j}\left(X\right)$ used in the definition above to have ${S}_{j}$, ${\mathrm{sigma}}_{j,k}$, the Einstein and EnergyMomentum tensors all defined consistently with each other. See Also References

  Landau, L.D., and Lifshitz, E.M. The Classical Theory of Fields, Course of Theoretical Physics Volume 2, fourth revised English edition. Elsevier, 1975. Compatibility

 • The Physics[EnergyMomentum] command was introduced in Maple 2017.