GCRD - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


OreTools[Modular]

  

GCRD

  

compute the GCRD of two Ore polynomials modulo a prime

  

LCLM

  

compute the LCLM of a sequence of Ore polynomials modulo a prime

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

Modular[GCRD](Ore1, Ore2, p, A)

Modular[LCLM](Ore1, Ore2, ..., Orek, p, A)

Parameters

Ore1, Ore2, ... Orek

-

Ore polynomials; to define an Ore polynomial, use the OrePoly structure

p

-

prime

A

-

Ore ring; to define an Ore ring, use the SetOreRing command

Description

• 

The Modular[GCRD](Ore1, Ore2, p, A) calling sequence returns the GCRD of Ore1 and Ore2 modulo the prime p.

• 

The Modular[LCLM](Ore1, Ore2, ..., Orek, p, A) calling sequence returns the GCRD of Ore1, Ore2, ..., Orek modulo the prime p.

Examples

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

  

Abramov, S.A.; Le, H.Q.; and Li, Z. "OreTools: a computer algebra library for univariate Ore polynomial rings." Technical Report CS-2003-12. School of Computer Science, University of Waterloo, 2003.

  

Li, Z., and Nemes, I. "A modular algorithm for computing greatest common right divisors of Ore polynomials." Proc. of ISSAC'97, pp. 282-289. Edited by W. Kuechlin. ACM Press, 1997.

See Also

OreTools

OreTools/Euclidean

OreTools/Modular

OreTools/OreAlgebra

OreTools/OrePoly

OreTools/SetOreRing

 


Download Help Document