IsCaminaGroup - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


GroupTheory

  

IsCaminaGroup

  

determine whether a group is a Camina group

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

IsCaminaGroup( G )

Parameters

G

-

a permutation group

Description

• 

A non-abelian group G is a Camina group if it is not perfect and if, for each gGH we have gG=g·H, where H is the derived subgroup of G. That is, the conjugacy class of each element of G not in the derived subgroup is equal to its coset of the derived subgroup. (In any group G, the conjugacy class gG of any element g is contained in the coset gH of the derived subgroup.)

• 

Examples of Camina groups are some (but not all) Frobenius groups and extraspecial p-groups, for prime numbers p.

• 

The IsCaminaGroup( G ) command determines, for a permutation group G, whether G is a Camina group. It returns true if G is a Camina group, and returns false otherwise.

Examples

withGroupTheory:

IsCaminaGroupQuaternionGroup

true

(1)

IsExtraspecialQuaternionGroup

true

(2)

IsCaminaGroupQuaternionGroup4

false

(3)

IsExtraspecialQuaternionGroup4

false

(4)

IsCaminaGroupDihedralGroup4

true

(5)

IsCaminaGroupDihedralGroup32

false

(6)

IsCaminaGroupSmallGroup72,41

true

(7)

IsCaminaGroupFrobeniusGroup968,2

true

(8)

IsCaminaGroupFrobeniusGroup300,1

false

(9)

GSmallGroup300,23:

IsCaminaGroupG

false

(10)

IsFrobeniusGroupG

true

(11)

HDerivedSubgroupG:

ccremovegginH,mapRepresentative,ConjugacyClassesG:

nopscc

4

(12)

nopsremovegElementsConjugacyClassg,G=ElementsLeftCosetg,H,cc

2

(13)

Compatibility

• 

The GroupTheory[IsCaminaGroup] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

GroupTheory

GroupTheory[IsFrobeniusGroup]

GroupTheory[IsPGroup]

 


Download Help Document