Example 1.
First create two manifolds M, N and define a diffeomorphism phi : M -> N.
Define a transformation from M to N and calculate its inverse.
CASE 1. Acting on vectors on M, PushPullTensor is the same as the DifferentialGeometry command PushForward.
CASE 2. Acting on 1-forms on M, PushPullTensor is the same as the DifferentialGeometry command Pullback, using the inverse of Phi1, that is, the transformation Psi1.
CASE 3. The action of PushPullTensor on tensors on M is determined by Case1 and Case2 and the fact that PushPullTensor is a homomorphism.
CASE 4. The command PushPullTensor will pushforward a connection on M to a connection on N. Define a connection A on M and push it forward to get a connection B on N.
We check the defining property of the pushforward connection B. Pick two vectors X and Y on M and calculate the directional covariant derivative with respect to A. Call it Z.
Push the vectors X, Y, Z over to N and get vector fields U, V, W.
Check that W is the directional covariant derivative of V in the direction of U with respect to the connection B.
We can also calculate the curvature tensor R of A, the curvature tensor S of B and check that the PushPullTensor applied to R gives S.
CASE 5. If S is a covariant tensor on N, then the second calling sequence to PushPullTensor will generate a covariant tensor field on M.
Example 2.
In this example, we define a mapping from R^3 to R^4 whose image is the unit sphere S^3 in R^4. The Pullback of the standard metric on R^4 by this map gives the metric on S^3 in conformal coordinates.
We check that the image of Phi2 is the unit sphere in R4.
We Pullback the standard Euclidean metric on R4 to R3.
Example 3.
In this example we return to the manifold M defined in Example 1 and introduce on M a local frame E1, E2, E3 with dual 1-forms Theta1, Theta2, Theta3.
Define the identity transformation from M to M1 and its inverse.
Write a type (1, 1) tensor given in the coordinate frame in terms of the frame FR and its dual.
Write a type (3, 0) tensor given in the frame FR in the coordinate frame.
Example 4.
Create a pair of rank 2 vector bundles over a common 3 dimension base and define a bundle automorphism.
To pushover a one form on the fibers of E to F, first convert it to a tensor.
Transform a connection on E to one on F.