GeneralizedCenter - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


LieAlgebras[GeneralizedCenter] - find the generalized center of an ideal

Calling Sequences

     GeneralizedCenter(S1, S2)

Parameters

     S1     - a list of vectors defining a basis for an idealin a Lie algebra  

     S2     - (optional) list of vectors defining a basis for a subalgebra with

 

.Description

Examples

DifferentialGeometry, LieAlgebras, Center

.Description

• 

Let be a Lie algebra, a subalgebra of , and an ideal with . Then the generalized center of with respect to is the ideal  for all  In particular, the generalized center of in  is the inverse image of the center of the quotient algebra  with respect to the canonical projection map .

• 

A list of vectors defining a basis for the generalized center of in is returned. If the optional argument S2 is omitted, then the default is If the generalized center of  in is trivial, then an empty list is returned.

• 

The command GeneralizedCenter is part of the DifferentialGeometry:-LieAlgebras package.  It can be used in the form GeneralizedCenter(...) only after executing the commands with(DifferentialGeometry) and with(LieAlgebras), but can always be used by executing DifferentialGeometry:-LieAlgebras:-GeneralizedCenter(...).

Examples

 

Example 1.

First initialize a Lie algebra.

 

Calculate the generalized center of [e1, e2] in the Lie algebra Alg1.

Alg1 > 

Alg1 > 

(2.1)

 

Calculate the generalized center of [e1, e4] in [e1, e2, e4, e5].

Alg1 > 

Alg1 > 

(2.2)

DifferentialGeometry, LieAlgebras, Center


Download Help Document