GatedRecurrentUnitLayer - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

DeepLearning

  

GatedRecurrentUnitLayer

  

create GRU layer

 

Calling Sequence

Parameters

Options

Description

Details

Examples

Compatibility

Calling Sequence

GatedRecurrentUnitLayer(units,opts)

GRULayer(units,opts)

Parameters

units

-

positive integer

opts

-

(optional) one or more keyword options described below

Options

• 

inputshape : list of integers or the symbol auto

  

Shape of the input Tensor, not including the batch axis.

  

With the default value auto, the shape is inferred. If inference is not possible, an error is issued.

  

This option need only be specified when this layer is the first in a Sequential model.

Description

• 

GatedRecurrentUnitLayer(units,opts) creates a gated recurrent unit (GRU) neural network layer with units units.

• 

GRULayer(units,opts) is equivalent to GatedRecurrentUnitLayer(units,opts).

• 

This function is part of the DeepLearning package, so it can be used in the short form GatedRecurrentUnitLayer(..) only after executing the command with(DeepLearning). However, it can always be accessed through the long form of the command by using DeepLearning[GatedRecurrentUnitLayer](..).

Details

• 

The implementation of GRULayer uses tf.keras.layers.GRU from the TensorFlow Python API. Consult the TensorFlow Python API documentation for tf.keras.layers.GRU for more information.

Examples

withDeepLearning

AddMultiple,ApplyOperation,BatchNormalizationLayer,BidirectionalLayer,BucketizedColumn,CategoricalColumn,Classify,Concatenate,Constant,ConvolutionLayer,DNNClassifier,DNNLinearCombinedClassifier,DNNLinearCombinedRegressor,DNNRegressor,Dataset,DenseLayer,DropoutLayer,EinsteinSummation,EmbeddingLayer,Estimator,FeatureColumn,Fill,FlattenLayer,GRULayer,GatedRecurrentUnitLayer,GetDefaultGraph,GetDefaultSession,GetEagerExecution,GetVariable,GradientTape,IdentityMatrix,LSTMLayer,Layer,LinearClassifier,LinearRegressor,LongShortTermMemoryLayer,MaxPoolingLayer,Model,NumericColumn,OneHot,Ones,Operation,Optimizer,Placeholder,RandomTensor,ResetDefaultGraph,Restore,Save,Sequential,Session,SetEagerExecution,SetRandomSeed,SoftMaxLayer,SoftmaxLayer,Tensor,Variable,Variables,VariablesInitializer,Zeros

(1)

modelSequentialEmbeddingLayer1000,64,GRULayer128,DenseLayer10

modelDeepLearning Model<keras.src.engine.sequential.Sequential object at 0x7f02f40d8910>

(2)

model:-Compile

Compatibility

• 

The DeepLearning[GatedRecurrentUnitLayer] command was introduced in Maple 2021.

• 

For more information on Maple 2021 changes, see Updates in Maple 2021.

See Also

DeepLearning Overview

 


Download Help Document