MomentGeneratingFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

MomentGeneratingFunction

  

compute the moment generating function

 

Calling Sequence

Parameters

Description

Computation

Options

Examples

References

Calling Sequence

MomentGeneratingFunction(X, t, options)

MGF(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equation of the form numeric=value; specifies options for computing the moment generating function of a random variable

Description

• 

The MomentGeneratingFunction function computes the moment generating function of the specified random variable at the specified point.

• 

The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

  

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the moment generating function is computed using exact arithmetic. To compute the moment generating function numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the moment generating function of the beta distribution with parameters p and q.

MomentGeneratingFunctionΒp,q,t

hypergeomp,p+q,t

(1)

Use numeric parameters.

MomentGeneratingFunctionΒ3,5,12

hypergeom3,8,12

(2)

MomentGeneratingFunctionΒ3,5,12,numeric

1.210195092

(3)

Define new distribution.

TDistribution`=`PDF&comma;tpiecewiset<0&comma;0&comma;t<1&comma;6t1t&comma;0&colon;

XRandomVariableT&colon;

MGFX&comma;u

6&ExponentialE;uu2&ExponentialE;u+u+2u3

(4)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998. Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Computation]

Statistics[Distributions]

Statistics[RandomVariables]

 


Download Help Document