CharacteristicFunction - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


Statistics

  

CharacteristicFunction

  

compute the characteristic function

 

Calling Sequence

Parameters

Description

Computation

Options

Examples

References

Calling Sequence

CharacteristicFunction(X, t, options)

Parameters

X

-

algebraic; random variable or distribution

t

-

algebraic; point

options

-

(optional) equation of the form numeric=value; specifies options for computing the Characteristic function of a random variable

Description

• 

The CharacteristicFunction function computes the Characteristic function of the specified random variable at the specified point.

• 

The first parameter can be a distribution (see Statistics[Distribution]), a random variable, or an algebraic expression involving random variables (see Statistics[RandomVariable]).

Computation

• 

By default, all computations involving random variables are performed symbolically (see option numeric below).

• 

For more information about computation in the Statistics package, see the Statistics[Computation] help page.

Options

  

The options argument can contain one or more of the options shown below. More information for some options is available in the Statistics[RandomVariables] help page.

• 

numeric=truefalse -- By default, the Characteristic function is computed using exact arithmetic. To compute the Characteristic function numerically, specify the numeric or numeric = true option.

Examples

withStatistics:

Compute the Characteristic function of the beta distribution with parameters p and q.

CharacteristicFunctionΒp,q,t

hypergeomp,p+q,It

(1)

Define new distribution.

TDistribution`=`PDF&comma;tpiecewiset<0&comma;0&comma;t<1&comma;6t1t&comma;0&colon;

XRandomVariableT&colon;

CDFX&comma;t

0t02t3+3t2t111<t

(2)

CharacteristicFunctionX&comma;t

62I&ExponentialE;It&ExponentialE;Itt+2Itt3

(3)

Another distribution

UDistribution`=`CDF&comma;tFt&comma;`=`PDF&comma;tft&colon;

YRandomVariableU&colon;

CDFY&comma;t

Ft

(4)

CharacteristicFunctionY&comma;t

2π

(5)

References

  

Stuart, Alan, and Ord, Keith. Kendall's Advanced Theory of Statistics. 6th ed. London: Edward Arnold, 1998.  Vol. 1: Distribution Theory.

See Also

Statistics

Statistics[Computation]

Statistics[Distributions]

Statistics[RandomVariables]

 


Download Help Document