algebraicsubs - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

All Products    Maple    MapleSim


gfun

  

algebraicsubs

  

substitute an algebraic function into a holonomic one

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

algebraicsubs(deq, eq, y(z), ini)

Parameters

deq

-

linear differential equation in y(z) with polynomial coefficients

eq

-

algebraic equation in y(z)

y

-

name; holonomic function name

z

-

name; variable of the holonomic function y

ini

-

(optional) set; specify computation of initial conditions for the resulting differential equation

Description

• 

The gfun[algebraicsubs](deq, eq, y(z)) command returns a differential equation satisfied by the composition fg where f is the holonomic function defined by the equation deq and g is the algebraic equation defined by eq.  The composition is holonomic by closure properties of holonomic functions.

• 

Let d1 be the differential order of deq, and d2 be the degree of eq. If the equation deq is homogeneous, then the order of fg is at most d1d2.  Otherwise, it is at most d1+1d2.

• 

If initial conditions are specified using ini, the algebraicsubs function attempts to compute initial conditions for the resulting differential equation.

  

Initial conditions can be present in the differential equation if a set is specified, in the same way as initial conditions are specified for dsolve. In the case of a polynomial equation, they are specified in the optional parameter ini as a set, using the same syntax as for dsolve.

Examples

The differential equation satisfied by cos(t).

withgfun:

deqD2ft+ft:

The algebraic equation satisfied by sqrt(1-4*t).

eqalgfuntoalgeqsqrt14t,ft:

The differential equation satisfied by cos(sqrt(1-4*t)).

algebraicsubsdeq,eq,ft

4ft+2ⅆⅆtft+1+4tⅆ2ⅆt2ft

(1)

algebraicsubsD2yx+yx,y0=1,Dy0=0,2x4y2+2yxx2,yx,y0=0,Dy0=1,D2y0=2sqrt2

2048x8+768x6+864x4236x2+87yx+320x3+280xⅆⅆxyx+512x6136x2+18ⅆ2ⅆx2yx+128x38xⅆ3ⅆx3yx+32x4+4x2+3ⅆ4ⅆx4yx,y0=1,Dy0=0,D2y0=−1,D3y0=62

(2)

See Also

dsolve

gfun

gfun/`diffeq+diffeq`

gfun/`rec+rec`

gfun/parameters

gfun[algfuntoalgeq]

 


Download Help Document