ConjugateRTerm - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

ConjugateRTerm

  

construct r-terms conjugate to a bivariate hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

ConjugateRTerm[1](T, n, k, 'listform')

ConjugateRTerm[2](T, n, k, 'listform')

Parameters

T

-

hypergeometric term of n and k

n

-

name

k

-

name

'listform'

-

(optional) specify output as a list

Description

• 

For a specified bivariate hypergeometric term Tn,k in n and k, the ConjugateRTerm[1](T, n, k) and ConjugateRTerm[2](T, n, k) commands construct two r-terms conjugate to Tn,k.

• 

The output is a bivariate hypergeometric term, called an r-term, conjugate to Tn,k, that is, it can be written as Rn,kTpn,k where Rn,k is a rational function of n and k, and Tpn,k=unvki=1sbik+ain+gi!i=s+1tai+bi+gi!, a_i, b_i are integers, gcdai,bi=1, 0ai, s, t are non-negative integers, and g_i, u, v are complex numbers. Tpn,k is called a factorial term.

• 

A polynomial pn,k is integer-linear if it has the form an+bk+c where a, b are integers, and c is a complex number.

  

For the first constructed r-term, all the integer-linear polynomials in the numerator and the denominator of the rational function Rn,k are moved into the factorial term Tpn,k.

  

For the second r-term, the integer-linear polynomials are moved from the factorial term Tpn,k to the rational function Rn,k, that is, for ij such that ai=aj, bi=bj, then gigj is not an integer; and in the case that gigj=0, either i,js or i,s+1j.

• 

If the optional argument 'listform' is specified, the output is a list Rn,k,Tpn,k.

• 

A sequence Tn,k is a bivariate hypergeometric term of n and k if there are nonzero polynomials f0, f_1, g_0, g_1 of n and k such that

f1n,kTn+1,k=f0n,kTn,k,g1n,kTn,k+1=g0n,kTn,k

  

for all non-negative integers n, k. Two hypergeometric terms T_1, T_2 are conjugate if they satisfy the above two relations with the same f_0, f_1, g_0, g_1.

• 

Note: The ConjugateRTerm command replaces the CanonicalRepresentation command.

Examples

withSumToolsHypergeometric:

T2kbinomial2n+k,n1+94n+83kn+k288n53

T2k2n+kn1+94n+83kn+k288n53

(1)

ConjugateRTerm1T,n,k,listform

537304,1+94n+83k!n+k3!12kn14188!2n+k!2+94n+83k!n+k2!n!n5388!n+k!

(2)

ConjugateRTerm2T,n,k,listform

28091+94n+83k730488n53n+k2,12k2n+k!n!n+k!

(3)

References

  

Abramov, S.A., and Petkovsek, M. "Canonical Representations of Hypergeometric Terms." Proceedings FPSAC'2001. pp. 1-10. 2001.

  

Abramov, S.A., and Petkovsek, M. "Proof of a Conjecture of Wilf and Zeilberger." University of Ljubljana, Preprint series. Vol. 39. (2001): 748.

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][IsHolonomic]

SumTools[Hypergeometric][IsProperHypergeometricTerm]

SumTools[Hypergeometric][RationalCanonicalForm]