msparse_series_sol - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Slode

  

msparse_series_sol

  

formal m-sparse power series solutions for a linear ODE

 

Calling Sequence

Parameters

Description

Options

Examples

Calling Sequence

msparse_series_sol(ode, var, vn, opts)

msparse_series_sol(LODEstr, vn, opts)

Parameters

ode

-

linear ODE with polynomial coefficients

var

-

dependent variable, for example y(x)

vn

-

new function in the form v(n)

opts

-

optional arguments of the form keyword=value

LODEstr

-

LODEstruct data structure

Description

• 

The msparse_series_sol command returns a set of m-sparse power series solutions of the given linear ordinary differential equation with polynomial coefficients.

• 

If ode is an expression, then it is equated to zero.

• 

The command returns an error message if the differential equation ode does not satisfy the following conditions.

– 

ode must be homogeneous and linear in var

– 

The coefficients of ode must be polynomial in the independent variable of var, for example, x, over the rational number field which can be extended by one or more parameters.

• 

A homogeneous linear ordinary differential equation with coefficients that are polynomials in x has a linear space of formal power series solutions n=0vnPnx where Pnx is one of xan, xann!, 1xn, or 1xnn!, a is the expansion point, and the sequence vn satisfies a homogeneous linear recurrence.

• 

This command selects such formal power series solutions where for an integer m2 there is an integer i such that

– 

vn0 only if nimodm=0, and

– 

the sequence vmn+i satisfies a linear recurrence Rvmn+i=0 for all sufficiently large n.

• 

The m-sparse power series is represented by an FPSstruct data-structure (see Slode[FPseries]):

FPSstructv0+v1P1x+...+vMPMx+n=s+1vmn+NPmn+Nx,Rvmn+N;

  

where

– 

v0,...,vM are expressions, the initial series coefficients,

– 

M is a nonnegative integer, and

– 

s is an integer such that M+1ms+N.

Options

• 

x=a or 'point'=a

  

Specifies the expansion point a. It can be an algebraic number, depending rationally on some parameters, or .

  

If this option is given, then the command returns a set of m-sparse power series solutions at the given point a. Otherwise, it returns a set of m-sparse power series solutions for all possible points that are determined by Slode[candidate_mpoints](ode,var).

• 

'sparseorder'=m0

  

Specifies an integer m0. If this option is given, then the command computes a set of m-sparse power series solutions with m=m0 only. Otherwise, it returns a set of m-sparse power series solution for all possible values of m.

  

If both an expansion point and a sparse order are given, then the command can also compute a set of m-sparse series solutions for an inhomogeneous equation with polynomial coefficients and a right-hand side that is rational in the independent variable x. Otherwise, the equation has to be homogeneous.

• 

'free'=C

  

Specifies a base name C to use for free variables C[0], C[1], etc. The default is the global name  _C. Note that the number of free variables may be less than the order of the given equation.

Examples

withSlode:

ode29x323x2+19xdiffyx,x,x,x+299x24x+13diffyx,x,x+2918x4diffyx,x+43yx

ode2x323x2+19xⅆ3ⅆx3yx9+29x24x+13ⅆ2ⅆx2yx9+218x4ⅆⅆxyx9+4yx3

(1)

msparse_series_solode,yx,vn

FPSstruct_C0+n=1v2nx162n,36v2n2+v2n,FPSstruct_C1x16+n=1v2n+1x162n+1,36v2n1+v2n+1

(2)

Inhomogeneous equations are handled:

ode1z2diffyz,z,z+3zdiffyz,z+z2+1n2yz=1

ode1z2ⅆ2ⅆz2yz+3zⅆⅆzyz+n2+z2+1yz=1

(3)

msparse_series_solode1,yz,vk,z=,sparseorder=2

FPSstruct1z2+k=2v2kz2k,v2k+4k2n212k+9v2k2

(4)

See Also

LODEstruct

Slode

Slode[candidate_mpoints]

Slode[FPseries]