RegularChains[SemiAlgebraicSetTools]
PositiveInequalities
return the positive inequalities of a regular semi-algebraic system
Calling Sequence
Parameters
Description
Examples
Compatibility
PositiveInequalities(rsas, R)
rsas
-
regular semi-algebraic system
R
polynomial ring
The command PositiveInequalities(rsas, R) returns the defining positive inequalities of the regular semi-algebraic system rsas. The polynomials must belong to R which must have characteristic zero.
See the page SemiAlgebraicSetTools for the definitions of a regular semi-algebraic system and that of a regular semi-algebraic set.
with⁡RegularChains:
with⁡SemiAlgebraicSetTools:
F ≔ a⁢x2+b⁢x+c=0,0<x,a≠0
F≔a⁢x2+b⁢x+c=0,0<x,a≠0
R ≔ PolynomialRing⁡x,c,b,a
R≔polynomial_ring
out ≔ LazyRealTriangularize⁡F,R,output=list
out≔regular_semi_algebraic_system
map⁡Display,out,R
a⁢x2+b⁢x+c=0x>0−4⁢c⁢a+b2>0andb<0andc>0anda≠0or−4⁢c⁢a+b2>0andb>0andc>0anda<0or−4⁢c⁢a+b2>0andb>0andc<0anda≠0or−4⁢c⁢a+b2>0andb<0andc<0anda>0
P ≔ PositiveInequalities⁡out1,R
P≔x
rc ≔ RepresentingChain⁡out1,R
rc≔regular_chain
qff ≔ RepresentingQuantifierFreeFormula⁡out1
qff≔quantifier_free_formula
Display⁡qff,R
−4⁢c⁢a+b2>0andb<0andc>0anda≠0
or−4⁢c⁢a+b2>0andb>0andc>0anda<0
or−4⁢c⁢a+b2>0andb>0andc<0anda≠0
or−4⁢c⁢a+b2>0andb<0andc<0anda>0
Display⁡out1,R
The RegularChains[SemiAlgebraicSetTools][PositiveInequalities] command was introduced in Maple 15.
For more information on Maple 15 changes, see Updates in Maple 15.
See Also
RealTriangularize
RegularChains
RepresentingChain
RepresentingQuantifierFreeFormula
SemiAlgebraicSetTools
Download Help Document
What kind of issue would you like to report? (Optional)