MatrixInverse - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


RegularChains[MatrixTools]

  

MatrixInverse

  

compute the inverse of a matrix modulo a regular chain

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

MatrixInverse(A, rc, R)

Parameters

A

-

square Matrix with coefficients in the ring of fractions of R

rc

-

regular chain of R

R

-

polynomial ring

Description

• 

The command MatrixInverse(A, rc, R) returns two lists.

• 

The first list the command returns is a list of pairs Bi,rci where rci is a regular chain and Bi is the inverse of A modulo the saturated ideal of rci.

• 

The second list the command returns is a list of triplets noInv,A,rci where rci is a regular chain and A is the input matrix such that A is not invertible modulo the saturated ideal of rci.

• 

All the returned regular chains rci form a triangular decomposition of rc (in the sense of Kalkbrener).

• 

It is assumed that rc is strongly normalized.

• 

The algorithm is an adaptation of the algorithm of Bareiss.

• 

This command is part of the RegularChains[MatrixTools] package, so it can be used in the form MatrixInverse(..) only after executing the command with(RegularChains[MatrixTools]).  However, it can always be accessed through the long form of the command by using RegularChains[MatrixTools][MatrixInverse](..).

Examples

Automatic case discussion.

withRegularChains:withChainTools:withMatrixTools:

RPolynomialRingy,z;rcEmptyR

Rpolynomial_ring

rcregular_chain

(1)

Assume we have two variables y and z that have the same square and z is a 4th root of -1. Suppose we need to compute modulo this relation.

rcChainz4+1,y2z2,rc,R:Equationsrc,R

y2z2,z4+1

(2)

mMatrix1,y+z,0,yz

m1y+z0yz

(3)

We want to compute the inverse of the previous matrix.

mimMatrixInversem,rc,R

mim100z32,regular_chain,noInv,1y+z0yz,regular_chain

(4)

Let us check the first result.

m1mim111;rc1mim112;Equationsrc1,R

m1100z32

rc1regular_chain

y+z,z4+1

(5)

MatrixMultiplym1,m,rc1,R

1001

(6)

Consider now this other matrix.

mMatrix1,y+z,2,yz

m1y+z2yz

(7)

mimMatrixInversem,rc,R

mim10z3z32,regular_chain,012z32z34,regular_chain,

(8)

m1mim111;rc1mim112

m110z3z32

rc1regular_chain

(9)

m2mim121;rc2mim122

m2012z32z34

rc2regular_chain

(10)

MatrixMultiplym2,m,rc2,R

1001

(11)

MatrixMultiplym2,m,rc2,R

1001

(12)

Get a generic answer that would hold both cases.

clrMatrixCombinerc1,rc2,R,m1,m2

clryz32+12yz34+1414yz234z318yz2+38z3,regular_chain

(13)

Check.

MatrixMultiplyclr11,m,clr12,R

1001

(14)

See Also

Chain

Empty

Equations

IsStronglyNormalized

IsZeroMatrix

JacobianMatrix

LowerEchelonForm

MatrixCombine

MatrixMultiply

MatrixOverChain

MatrixTools

NormalForm

PolynomialRing

RegularChains