PolynomialTools/RootPowerSum - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

Online Help

Home : Support : Online Help : PolynomialTools/RootPowerSum

PolynomialTools

  

RootPowerSum

  

compute the sum of a give power of the roots of a polynomial

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

RootPowerSum( p, x, n )

Parameters

p

-

: polynom : a polynomial in x

x

-

: name : the indeterminate

n

-

: nonnegint : the power of the roots of p

Description

• 

The RootPowerSum( p, x, n ) command computes the sum of the n-th powers of the roots of the polynomial p in the indeterminate x.

• 

Note that RootPowerSum( p, x, 0 ) is the same as the degree of p in x; RootPowerSum( p, x, 1 ) is the sum of the roots of p (as a polynomial in x); RootPowerSum( p, x, 2 ) is the sum of the squares of the roots of p; and so on.

Examples

withPolynomialTools:

px32x25x+3

px32x25x+3

(1)

RootPowerSump,x,0

3

(2)

RootPowerSump,x,1

2

(3)

RootPowerSump,x,2

14

(4)

pexpandx2x12

px34x2+5x2

(5)

RootPowerSump,x,0

3

(6)

RootPowerSump,x,1

4

(7)

RootPowerSump,x,2

6

(8)

RootPowerSump,x,3

10

(9)

RootPowerSump,x,4

18

(10)

px4yy2x+xy4

px4yy2x+xy4

(11)

RootPowerSump,x,0

4

(12)

RootPowerSump,y,0

2

(13)

RootPowerSump,x,3

3y3

(14)

RootPowerSump,y,2

x7+2x4+x8x

(15)

A generic cubic polynomial expressed as a product of linear factors.

pexpandxrxsxt

prst+rsx+rtxrx2+stxsx2tx2+x3

(16)

RootPowerSump,x,1

r+s+t

(17)

RootPowerSump,x,2

r2+s2+t2

(18)

RootPowerSump,x,30

r30+s30+t30

(19)

Consider a general quadratic polynomial in x.

pax2+bx+c

pax2+bx+c

(20)

ddiscrimp,x

d4ac+b2

(21)

The quadratic formula gives us the following roots for p.

ub+sqrtd2a

ub+4ac+b22a

(22)

vbsqrtd2a

vb4ac+b22a

(23)

RootPowerSump,x,1=normalu+v

ba=ba

(24)

RootPowerSump,x,2=normalu2+v2

2acb2a2=2acb2a2

(25)

RootPowerSump,x,3=normalu3+v3

b3acb2a3=b3acb2a3

(26)

As a polynomial in x, this polynomial has roots y, 2z and yz.

pexpandxyx2zxyz

px2yz+xy2z+2xyz22y2z2+x3x2y2x2z+2xyz

(27)

RootPowerSump,x,0

3

(28)

RootPowerSump,x,1

yz+y+2z

(29)

RootPowerSump,x,2

y2z2+y2+4z2

(30)

RootPowerSummulxri,i=1..12,x,10

r110+r1010+r1110+r1210+r210+r310+r410+r510+r610+r710+r810+r910

(31)

pexpandxsqrt2xsqrt3xsqrt7

px3x27x23+x372x2+2x7+23x237

(32)

RootPowerSump,x,1

7+3+2

(33)

RootPowerSump,x,2

12

(34)

RootPowerSump,x,20

282535322

(35)

pexpandxsqrt2xsin1xexpt

px3x2ⅇtx2sin1+xsin1ⅇt2x2+2xⅇt+2sin1x2sin1ⅇt

(36)

RootPowerSump,x,1

ⅇt+sin1+2

(37)

RootPowerSump,x,4

ⅇt4+sin14+4

(38)

Compatibility

• 

The PolynomialTools[RootPowerSum] command was introduced in Maple 2022.

• 

For more information on Maple 2022 changes, see Updates in Maple 2022.

See Also

PolynomialTools

 


Download Help Document