in - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


PolyhedralSets

  

`intersect`

  

polyhedral intersection operator

  

`subset`

  

polyhedral subset operator

  

`in`

  

polyhedral membership operator

 

Calling Sequence

Parameters

Description

Examples

Compatibility

Calling Sequence

s1 intersect s2

s1s2

`intersect`(s1, s2, s3, ...)

s1 subset s2

s1s2

`subset`(s1,s2)

s1 in s2

s1s2

`in`(s1,s2)

pnt in s1

pnts1

`in`(pnt,s1)

Parameters

s1, s2, s3, ...

-

polyhedral sets

pnt

-

point specified as list of rationals, or list or set of equations of the form coordinate = rational

Description

• 

The PolyhedralSets package provides definitions for the intersect, subset and in set operators.  The intersection operators returns a new polyhedral set, while the subset and in operators return either true or false.

• 

The definition of the set operators can be loaded using with(PolyhedralSets).

Examples

withPolyhedralSets:

Intersection

• 

Four of the corners of a cube can be cut off by taking its intersection with a tetrahedron

tetraPolyhedralSet21,1,1,1,1,1,1,1,1,1,1,1,x,y,z:cubeExampleSets:-Cubex,y,z:t_c_intersecttetraintersectcube

t_c_intersect{Coordinates:x,y,zRelations:z1,z1,y1,y1,yzx2,x1,y+zx2,xy+z2,x1,x+yz2

(1)

Plott_c_intersect

Subset

• 

Construct a tetrahedron and a cube

tetraExampleSets:-Tetrahedron

tetra{Coordinates:x1,x2,x3Relations:x1x2x31,x1+x2+x31,x1x2+x31,x1+x2x31

(2)

cubeExampleSets:-Cube

cube{Coordinates:x1,x2,x3Relations:x31,x31,x21,x21,x11,x11

(3)
• 

The tetrahedron tetra is a subset of the cube cube

tetrasubsetcube

true

(4)
• 

But cube isn't a subset of tetra

cubesubsettetra

false

(5)

In

• 

Any point in a set will return true when tested with in

cExampleSets:-Cube

c{Coordinates:x1,x2,x3Relations:x31,x31,x21,x21,x11,x11

(6)

0,0,0inc

true

(7)
• 

To find the face on which the point resides, see PolyhedralSets[LocatePoint]

Compatibility

• 

The PolyhedralSets[`intersect`], PolyhedralSets[`subset`] and PolyhedralSets[`in`] commands were introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

PolyhedralSets[LocatePoint]

PolyhedralSets[IsInInterior]

PolyhedralSets[ConvexHull]

PolyhedralSets[Equal]

PolyhedralSets[IsFace]

PolyhedralSets[PolyhedralSet]

PolyhedralSets