Decompose - Maple Help

Online Help

All Products    Maple    MapleSim


Ordinals

  

Decompose

  

exponentially decompose an ordinal number

 

Calling Sequence

Parameters

Returns

Description

Examples

Compatibility

Calling Sequence

Decompose(a, output=o)

Parameters

a

-

ordinal or non-negative integer

o

-

(optional) literal keyword; either list (default) or inert

Returns

• 

If output=list (the default), a list of ordinals and non-negative integers is returned. Unless a=0 or a=1, any integers in the list are strictly greater than 1.

• 

Otherwise, if output=inert is specified, an inert exponentiation of ordinal numbers using the inert operator &^ is returned.

Description

• 

The Decompose(a) calling sequence computes an exponential normal form a1a2an of a as an iterated power of ordinals and non-negative integers a1,a2,,an that cannot be decomposed any further as a power of strictly smaller ordinals.

• 

The composition factors have the following additional properties, which ensure uniqueness of the decomposition.

i. 

Trivial cases: a=1n=0, and if a=0, then n=1 and a1=0.

ii. 

If a2 is an integer, then ak are all integers 2.

iii. 

If ak2 is an integer, then it is not a perfect power, that is, it cannot be written as bc for integers b,c2.

iv. 

If ak is not an integer, then either k=n=1 and a=ak=ω, or ak has at least two nonzero terms in the Cantor normal form.

v. 

If a is not an integer, then there is an index i1,,n such that ai is not an integer and ai+1,,an  are all integers 2.

vi. 

If i2, then a1==ai2=2 and degreeai1>0=tdegreeai. (Moreover, either ai12 is an integer, or it has at least two nonzero terms.)

• 

Exponential decomposition is a one-sided inverse of powering, in the sense that valueDecomposea,output=inert=a.

• 

The ordinal a can be parametric. However, if the complete decomposition cannot be computed in such a case, an error will be raised.

Examples

withOrdinals

`+`&comma;`.`&comma;`<`&comma;<=&comma;Add&comma;Base&comma;Dec&comma;Decompose&comma;Div&comma;Eval&comma;Factor&comma;Gcd&comma;Lcm&comma;LessThan&comma;Log&comma;Max&comma;Min&comma;Mult&comma;Ordinal&comma;Power&comma;Split&comma;Sub&comma;`^`&comma;degree&comma;lcoeff&comma;log&comma;lterm&comma;ω&comma;quo&comma;rem&comma;tcoeff&comma;tdegree&comma;tterm

(1)

Decomposeωω

2&comma;2&comma;2&comma;ω&plus;1

(2)

Using output=inert. The result can be verified using value.

Decomposeωω&comma;output=inert

222ω&plus;1

(3)

value

ωω

(4)

Decomposeωω+1

2&comma;ω2&plus;ω

(5)

Any ordinal ω with a single term can be decomposed.

Decomposeω·3

3&comma;ω&plus;1

(6)

Decomposeω3

2&comma;3&comma;ω&plus;1

(7)

Decomposeω2·3

3&comma;ω2&plus;1

(8)

Decomposeωω+1·2&comma;output=inert

2ω&plus;12

(9)

value

ωω&plus;12

(10)

The following equality is not a decomposition into strictly smaller ordinals, and therefore ω is indecomposable.

2ω=2ω

2ω=ω

(11)

Decomposeω

ω

(12)

More than one term.

bω2+ω

bω2&plus;ω

(13)

aωb+2+ωb+1

aωω2&plus;ω&plus;2&plus;ωω2&plus;ω&plus;1

(14)

Decomposea&comma;output=inert

ω2&plus;ωω&plus;12

(15)

ca+ωb·3

cωω2&plus;ω&plus;2&plus;ωω2&plus;ω&plus;1&plus;ωω2&plus;ω3

(16)

Decomposec&comma;output=inert

ω2&plus;ω&plus;3ω&plus;12

(17)

pω+22

pω2&plus;ω2&plus;2

(18)

Decomposep&comma;output=inert

ω&plus;22

(19)

qω+3p

qωω2&plus;ω2&plus;2&plus;ωω2&plus;ω2&plus;13&plus;ωω2&plus;ω23

(20)

Decomposeq&comma;output=inert

ω&plus;3ω&plus;22

(21)

rω+5q

rωωω2&plus;ω2&plus;2&plus;ωω2&plus;ω2&plus;13&plus;ωω2&plus;ω23

(22)

Decomposer&comma;output=inert

2ω&plus;3ω&plus;22

(23)

fOrdinal8&comma;1&comma;7&comma;2&comma;6&comma;3&comma;5&comma;2&comma;4&comma;3&comma;3&comma;2&comma;2&comma;3&comma;1&comma;2&comma;0&comma;3

fω8&plus;ω72&plus;ω63&plus;ω52&plus;ω43&plus;ω32&plus;ω23&plus;ω2&plus;3

(24)

Decomposef&comma;output=inert

ω2&plus;ω2&plus;322

(25)

Non-negative integers can be decomposed as well.

Decompose2417851639229258349412352&comma;output=inert

2322

(26)

Parametric examples.

uOrdinal2&comma;x&comma;1&comma;3x&comma;0&comma;3

uω2x&plus;ω3x&plus;3

(27)

Decomposeu

Error, (in Ordinals:-Decompose) cannot determine if x is nonzero

DecomposeEvalu&comma;x=x+1&comma;output=inert

ωx+1&plus;32

(28)

vOrdinalω+3&comma;1&comma;ω+2&comma;x&comma;ω+1&comma;1

vωω&plus;3&plus;ωω&plus;2x&plus;ωω&plus;1

(29)

Decomposev&comma;output=inert

ω3&plus;ω2x&plus;ωω&plus;1

(30)

Compatibility

• 

The Ordinals[Decompose] command was introduced in Maple 2015.

• 

For more information on Maple 2015 changes, see Updates in Maple 2015.

See Also

Ordinals

Ordinals[Factor]

Ordinals[Ordinal]

Ordinals[Power]

value