Transfer Functions
Back to Portal
Introduction
The DynamicSystems package contains many tools for manipulating transfer functions, and visualizing their response in both the time and frequency domain.
Here, we demonstrate how to define a transfer function, generate a phase plot, and convert a transfer function to the time domain. Much more is possible.
Define a Transfer Function
restart:withDynamicSystems:
tf≔sa⋅s2+b⋅s+c:
Define a transfer function object
sysTF≔TransferFunctiontf,parameters=a=1,b=1,c=1
sysTF≔Transfer Functioncontinuous1 output(s); 1 input(s)inputvariable=u1soutputvariable=y1s
Generate a Phase Plot
PhasePlotsysTF,parameters=a=3,b=4,c=5
Convert Transfer Function to a Differential Equation
sysDE≔DiffEquationtf
sysDE≔Diff. Equationcontinuous1 output(s); 1 input(s)inputvariable=u1toutputvariable=y1t
sysDE:-de
ⅆⅆtx1t=−ax2tb,ⅆⅆtx2t=cbx1ta2−bx2ta−bu1ta,y1t=−x2tb
Discretization and Time-Domain Response to an Input Signal
Sampling time and number of samples
Ts≔0.025:Ns≔1000:
Generate the input signal
NoisyInput≔Chirp1,0.02,0.01,hertz=true,discrete=true,samplecount=Ns,sampletime=Ts+Statistics:-SampleNormal0,0.05,Ns%T:
Discretize the transfer function
sysTFD≔ToDiscretesysTF,Ts
sysTFD≔Transfer Functiondiscrete; sampletime = .25e-11 output(s); 1 input(s)inputvariable=u1zoutputvariable=y1z
Simulate and plot the response
OutputResponse≔SimulatesysTFD, NoisyInput, parameters=a=1,b=1,c=1
plotseqi−1⋅Ts,OutputResponsei,i=1..Ns
Applications
Amplifier Gain
Bandpass Filter Design
Inverted Pendulum
Download Help Document